
Università degli Studi di Sassari

XRMC

The definitive manual

Version 6.5.0

Bruno Golosio
Tom Schoonjans
Antonio Brunetti

Giovanni Luca Masala
Piernicola Oliva

September 10, 2014

Contents

1 Introduction 3

2 Installation instructions 3
2.1 Compiling from source . 3
2.2 Windows installer . 4
2.3 Linux . 5

2.3.1 Fedora, Centos and Scientific Linux 5
2.3.2 Debian and Ubuntu . 5

2.4 Mac OS X . 6

3 User guide 7
3.1 Getting started . 7
3.2 Using the program . 7

3.2.1 The main input file . 8
3.2.2 The spectrum file . 9
3.2.3 The source file . 13
3.2.4 The detector file . 15
3.2.5 The composition file . 20
3.2.6 The quadric array file . 21
3.2.7 The three-dimensional object geometry description file . . 23
3.2.8 The sample file . 25
3.2.9 The output file . 27

4 Advanced usage 27
4.1 Direction-dependent beam intensity and energy spectrum 28

4.1.1 The anisotropicsource and the intensityscreen devices . . 28
4.1.2 The beamsource and the beamscreen devices 30

4.2 Simulation of a realistic imaging detector response 33
4.3 Radionuclides sources . 36
4.4 Free-space propagation phase contrast imaging 38
4.5 The XMI-MSIM plug-in . 39

4.5.1 Energy dispersive x-ray fluorescence detector response func-
tion . 39

4.5.2 Generic x-ray tube emission spectrum: Ebel model 41

5 Description of the XRMC classes 43
5.1 Vector and matrix operations . 43
5.2 The photon class . 44
5.3 The device and bodydevice classes 45
5.4 The source class . 47
5.5 The spectrum class . 48
5.6 The phase class . 50

1

5.7 The composition class . 51
5.8 The quadric class . 51
5.9 The quadricarray class . 52
5.10 The qvolume class . 53
5.11 The geom3d class . 53
5.12 The path class . 54
5.13 The sample class . 55
5.14 The detectorarray class . 56

6 Examples 58
6.1 Cylindrical shell . 58
6.2 Star shapes . 59
6.3 Different types of quadrics . 60
6.4 A wheel shape . 60
6.5 Objects with different compositions 61
6.6 Anisotropicsource and intensityscreen 61
6.7 Beamsource and beamscreen . 62
6.8 Free-propagation phase contrast imaging 65

7 References and addtional resources 66
7.1 Bibliography . 66
7.2 Useful links . 67

2

1 Introduction

XRMC is a Monte Carlo program for accurate simulation of X-ray imaging and
spectroscopy experiments in heterogeneous samples. The use of the Monte Carlo
method makes the code suitable for the detailed simulation of complex experiments
on generic samples. Variance reduction techniques are used for reducing consider-
ably the computation time compared to general purpose Monte Carlo programs.
The program is written in C++ and has been tested on Linux, Mac OS X and MS
Windows platforms.
XRMC is released under the terms of the GPLv3.
Unfortunately we cannot provide any other support apart from the information con-
tained within this manual, mostly because we do not have the resources to do so.
Please do not write us emails asking for help with your simulations, or for explain-
ing unexpected results.
As is true for all non-trivial software, XRMC is not free of bugs. We try and fix
bugs in every released version. In order to do this, we would like to ask all users
to send us their bugreports, which should consist of the input-files that provoke the
bug. Send reports to golosio@uniss.it.
The software package is being developed at the University of Sassari by Bruno
Golosio, Tom Schoonjans, Antonio Brunetti, Giovanni Luca Masala and Piernicola
OlivaA.
We have recently published amanuscript coveringmost of the features implemented
in XRMC: B. Golosio, T. Schoonjans, A. Brunetti, P. Oliva, and G. L. Masala.
Monte Carlo simulation of X-ray imaging and spectroscopy experiments using
quadric geometry and variance reduction techniques. Computer Physics Commu-
nications, 2013.
You are kindly requested to include this paper in the reference list of your published
work when you would decide to use XRMC for scientific purposes.

2 Installation instructions

2.1 Compiling from source

The source code can be downloaded from the XRMC downloads repository.
In order to compile the software from source, please ensure that you have xraylib
installed, as well as a C++ compiler with OpenMP support (v3.0 or higher).
We are currently extending the functionality of the program through the use of plug-
ins. So far one plug-in has been written that allows for the simulation of ED-XRF
detector response functions. Support for this plug-in requires that XMI-MSIM is
installed at compile time.
After downloading the tarball, unpack and compile the source code using the fol-
lowing commands:

gunzip xrmc-version.tar.gz

3

http://www.gnu.org/copyleft/gpl.html
mailto:golosio@uniss.it
http://dx.doi.org/10.1016/j.cpc.2013.10.034
http://dx.doi.org/10.1016/j.cpc.2013.10.034
http://dx.doi.org/10.1016/j.cpc.2013.10.034
http://dx.doi.org/10.1016/j.cpc.2013.10.034
http://lvserver.ugent.be/xrmc/files
https://github.com/tschoonj/xraylib
https://github.com/tschoonj/xmimsim

tar xvf xrmc-version.tar

cd xrmc-version

./configure

make

Optional, but recommended is to check if the compilation went well:

make check

Finally installation is performed with:

make install

The configure command takes several options (execute ./configure --help to
see a full list), the most important one being --prefix=, which is used to set the
installation directory. The default value is /usr/local, which in most cases will
require administrative privileges to install into.
On some Linux systems (RedHat based), you may have to run ldconfig after in-
stallation in order to have the xrmc executable link to the required shared libraries
at runtime, provided that the xrmc shared library is installed in a location that is
mentioned in /etc/ld.so.conf.
Otherwise you may have to adjust the LD_LIBRARY_PATH environment variable
to correspond to the locationwhere the xrmc shared library is installed (${prefix}/lib64
or ${prefix}/lib in most cases).
After installation, if the shell responds to the invocation of xrmc with a command
not found error, you will have to modify the PATH environment variable to in-
clude the installation location of the xrmc executable, which should be ${prefix}/bin

2.2 Windows installer

An installer has been written that will facilitate deployment on theWindows operat-
ing system. Currently the included binaries are 32-bit only. The installation wizard
will download and install its dependencies if necessary and/or required (xraylib and
XMI-MSIM).
The Windows installer can be downloaded from XRMC downloads repository.
After installation, the user can launch simulations from the command-line through
executing.

xrmc.exe inputfile

The software can be easily removed using the Add/Remove Software utility in Con-
trol Panel

4

http://lvserver.ugent.be/xrmc/files

2.3 Linux

2.3.1 Fedora, Centos and Scientific Linux

To facilitate the installation on RPM based Linux distributions, the package in-
cludes a spec file which can be used to produce RPM packages for linux distri-
butions that support them (Fedora, Red Hat etc). The developers have built 64-bit
RPM packages of XRMC for the Fedora 16-20 and Redhat EL/CentOS/Scientific
Linux 7 distributions. These can be downloaded from the RPM repository that is
hosted by the X-ray Microspectroscopy and Imaging research group of Ghent Uni-
versity. Access to this repository can be obtained as follows for Fedora distros:

su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-fedora.noarch.rpm'

for Red Hat EL 6 based distributions:

su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-6.0-1.el6.noarch.rpm'

and for Red Hat EL 7 based distributions:

su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-7.0-1.el7.noarch.rpm'

The XRMC packages themselves can then be downloaded using yum:

su -c 'yum install xrmc'

Updates can be installed in a similar way:

su -c 'yum update xrmc'

The XMI-MSIM plug-in can be installed with:

su -c 'yum install xrmc-xmimsim'

2.3.2 Debian and Ubuntu

Packages were created for Debian and Ubuntu. Currently the following flavors are
supported: Debian Squeeze and several Ubuntu versions.
In order to access these packages using your favorite package manager, execute the
following command to import our public key:

curl http://lvserver.ugent.be/apt/xmi.packages.key |
sudo apt-key add -

Next, add the package download location corresponding to your distribution to the
/etc/apt/sources.list file (as root):
Debian Squeeze:

5

deb http://lvserver.ugent.be/apt/debian squeeze stable
deb-src http://lvserver.ugent.be/apt/debian squeeze stable

Debian Wheezy:

deb http://lvserver.ugent.be/apt/debian wheezy stable
deb-src http://lvserver.ugent.be/apt/debian wheezy stable

Ubuntu Precise 12.04:

deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu precise stable
deb-src http://lvserver.ugent.be/apt/ubuntu precise stable

Ubuntu Saucy 13.10:

deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu saucy stable
deb-src http://lvserver.ugent.be/apt/ubuntu saucy stable

Ubuntu Trusty 14.04:

deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu trusty stable
deb-src http://lvserver.ugent.be/apt/ubuntu trusty stable

When the sources.list file contains the correct download locations, update the apt
cache by running:

sudo apt-get update

After this, one can install XRMC by executing the following command:

sudo apt-get install xrmc

The XMI-MSIM plug-in can be installed by executing

sudo apt-get install xrmc-xmimsim

2.4 Mac OS X

A request has been submitted to Macports for inclusion of XRMC into their repos-
itory. Installation instructions will be given when the package has been accepted.
Until then, please compile XRMC from source.

6

www.macports.org

3 User guide

3.1 Getting started

This section contains some basic recommendations for new XRMC users.

• It can be useful to start working with existing examples, which are described
in section 6. You should select the example that is the closest to the experi-
mental conditions that you want to simulate. First, run the example as is and
analyze the obtained results. Next, modify the example in order to replicate
the desired simulation conditions. It is better that you modify one device file
at a time, so that in case something does not work as expected, it should not
be too hard to track down the origin of the problem.

• The current version of XRMC does not include tools to visualize the exper-
imental setup. However, you can use the program itself to visualize radio-
graphic projections of the sample. Even if you want to run a simulation with
a single element detector (for instance if you are simulating a spectroscopy
measurement) it can be useful to define also a second source and an array de-
tector, such as those used in the imaging examples, loaded by a second input
file, used only for visualization purpose. This way you can verify the sample
geometry.

• If the sample geometry does not look as expected, try to visualize only one
three-dimensional object at a time. You can do this easily by commenting all
the lines corresponding to the other objects in the geom3d file, as described in
the section covering the three-dimensional object geometry description file.

• When defining the geometric description of the sample, pay particular atten-
tion to XRMCs limitations in defining three-dimensional objects, as outlined
in a later section.

3.2 Using the program

Before running XRMC, you must prepare the input files that describe the exper-
imental setup that you want to simulate. Those files include a main input file,
a parameter file and some device files. The term device refers to a C++ object
that is created to be used by the simulation and whose parameters are loaded from
the corresponding file. It is not necessarily a physical device. For instance, the
phase (material) array and the sample are considered to be devices. Each device
file consists of a header that specifies the type and name of the device, a list of
commands or variable names, and finally the ``End'' command. The order of com-
mands/variable names is generally not important, unless they are part of the same
group (for instance, the atomic number and weight percent of the elements in a
material), as described in the following paragraphs. Each command/variable name

7

can be followed by one or more arguments (real values, integer values or strings,
depending on the command). Command/variable names need not to be in the same
line. Comments can be inserted in all input files by preceding them by any of the
following characters: `;', `!' or `#'. XRMC is case sensitive. Most commands and
variable names in the input files follow the CamelCase convention, i.e. the first let-
ter of each concatenated word is capitalized. The following paragraphs describe
the commands that can be used in all device files used by the program. Although
all variables have a default value, and therefore most commands are not mandatory,
it is strongly recommended to explicitly assign a value to all variables in the input
files.

3.2.1 The main input file

The main input file specifies the commands for loading all device files, the com-
mand for running the simulation and the command for saving the output in a file.
A device is created, and its parameters are loaded from a file, through the command:

• Load filename

where filename is the name of the device file.
The typical setup for x-ray imaging/spectroscopy simulations include the following
devices:

1. a source (source device);

2. a spectrum (spectrum device);

3. a detector (detectorarray device);

4. a sample (sample device);

5. a phase (material) composition array (composition device);

6. a quadric array (quadricarray device);

7. a three-dimensional object geometry description (geom3d device).

The associated input files are described in the following sections.
The order of the ``Load'' commands is not relevant.
After such commands, the simulation can be started by the command

• Run devicename

where devicename corresponds to the name of the device that controls the acqui-
sition of the simulation results, i.e. in x-ray imaging/spectroscopy simulations the

8

name of the detectorarray device, as specified in the header of the corresponding
file.
Finally, the result of the simulation is saved by the command

• Save devicename dataname filename

where devicename has the same meaning as described for the previous command,
dataname is a name associated to the data that should be saved, and filename is the
name of the file used to save the results. The allowed entries for dataname depend
on the device; for the detectorarray device the only allowed entry is Image.

3.2.2 The spectrum file

The source spectrum is modeled as the sum of two components: a set of discrete
lines and a continuous component. The radiation can be unpolarized, partially po-
larized or totally polarized. The lines can have a Gaussian or a Dirac δ distribution
(the latter one being simply a particular case of Gaussian distribution with σ = 0).
Each line is specified by its mean energy El, by its intensity Il and by σl.
In case of (partially or totally) polarized radiation, the intensity of the two compo-
nents polarized along the local x and y directions are specified separately for each
line.
The continuous component is defined by N samples at arbitrary energies E1,… , EN ,
by specifying for each sample the corresponding height of the spectral distribution
I1,… ,IN . The height of the distribution in the interval between two consecutive
energies of the sample Ei, Ei+1 is approximated by a linear function of E that goes
from Ii to Ii+1, therefore the spectrum in each interval between two consecutive
samples has a trapezoidal shape. The area of the trapezium (Ei+1 - Ei)×(Ii + Ii+1)/2
represents the intensity of the interval. In case of (partially or totally) polarized radi-
ation, the height of the x and y components are specified separately for each sample
of the continuous component.
There are two possible ways of extracting the initial energy of x-ray photons pro-
duced by the source:

1. extract random energies on the whole spectrum: the photon initial energy is
extracted using the whole spectrum itself as a probability distribution;

2. loop on all lines and on all intervals of the spectrum: a loop is made on all
lines and on all intervals of the spectrum; the initial energy of the photon is
extracted according to the probability distribution limited to the single line
or to the single interval; the event is assigned a weight proportional to the
line/interval intensity.

The first manner corresponds to the traditional Monte Carlo approach. Lines or
regions of the spectrum with lower intensity are less represented in the generated
statistic, no matter how important is the contribution that they give to the detected

9

signal. There can be some drawback in this approach. For instance, if the spectrum
has a relative low intensity at higher energies and if the sample is a strongly absorb-
ing object, the statistic of events with higher energies will be low even though they
give the most important contribution to the detected signal.
The second approach is closer to deterministic integration methods and should usu-
ally be preferred to the first one. All lines and all interval are equally represented
in the generated statistic, and their relative probability is corrected by using the
method of weighting the event.
If the second method is chosen, than for each interval of the continuous component
there are two possible ways of extracting the photon energy:

1. extract the energy randomly according to the probability distribution inside
the interval itself (which is modeled by a linear function, as discussed previ-
ously);

2. force the photon energy to be equal to the central energy of the interval.

The second method is the pure deterministic approach, and normally it should not
be used.
The program offers the opportunity to resample the continuous component after its
definition. In this case, the user must specify the starting energy, the energy step
and the number of points used for the resampling. The intensities Ii are then recal-
culated for the new values of Ei. Normally this option will not be used, however
it may be useful for variance reduction if the space between sampling energies in
the continuous component definition is too large and a finer separation is desired
or, in the opposite case, if the energy step in the initial definition of the spectrum is
unnecessarily too small.

spectrum device file header

• Newdevice spectrum

• name (string)

Commands

• PolarizedFlag val

– specifies is the beam is polarized;

– val = 0: unpolarized beam;

– val = 1: polarized beam;

10

• LoopFlag val

– energy extraction method:

– val = 0: extract extract random energies on the whole spectrum;

– val = 1: loop on all lines and sampling points;

• ContinuousPhotonNum val

– val (integer): multiplicity of events for each interval in spectrum;

• LinePhotonNum val

– val (integer): multiplicity of events for each line in spectrum;

• RandomEneFlag val

– enable/disable random energy in each interval of the continuous spec-
trum;

– val = 0: random energy disabled;

– val = 1: random energy enabled (recommended);

• Lines

– specifies the discrete energy lines of the spectrum;

– energies and σ are expressed in keV:

• Nl (integer): Number of lines in the spectrum

• E1 σ1 I1 (real values): energy, width (rms) and intensity of the 1st line

• …

• ENl σNl INl (real values): energy, width (rms) and intensity of the N-th line

11

– for polarized beams, or

• E1 σ1 Ix1 Iy1 (real values): energy, width (rms) and intensities of the two
polarization components of the 1st line

• …

• ENl σNl IxNl IyNl (real values): energy, width (rms) and intensities of the
two polarization components of the N-th line

• ContinuousSpectrumFile

– continuous component of the spectrum;

• Nl (integer): Number sampling points in the continuous spectrum

• filename: name of the file containing the continuous spectrum;

– in the case of unpolarized beam, the file has the following format:

• E1 I1 (real values): energy and intensity of the 1st sampling point

• …

• ENl INl (real values): energy and intensity of the N-th sampling point

– while for polarized beam it has the following format:

• E1 Ix1 Iy1 (real values): energy and intensities of the two polarization com-
ponents of the 1st sampling point

• …

• ENl IxNl IyNl (real values): energy and intensities of the two polarization
components of the N-th sampling point

12

• ContinuousSpectrum

– same as ContinuousSpectrumFile, but the spectrum is loaded inline
rather than from an external file. Clearly, the filename parameter is
not used in this case

• Resample val

– val = 0: do not resample continuous spectrum;

– val = 1: resample continuous component of the spectrum;

– If val = 1, the following arguments must also be provided:

• NR (integer): number of resampling points;

• Emin (real): minimum resampling energy (keV);

• Emax (real): maximum resampling energy (keV);

• End

– End of file.

The total number of generated events is given by the product of the multiplicities
in the spectrum, in the interactions with the sample and in the detector pixels.

3.2.3 The source file

The current version of the code assumes that the x-ray beam is produced by a point
source or by an extended source with a three-dimensional Gaussian distribution.
A local coordinate system is associated to the source, specified by the vector po-
sition of the origin rs and by the orthonormal unit vectors is, js and ks (see Fig.
1), which are the directions of the local x, y, and z axis, respectively. The local z
axis represents the main source direction, while the local x and y axes are used to
define the beam polarization and angular aperture. Let θs and φs be the polar and
azimuthal angle, respectively, relative to the source coordinate system. The user
can specify the angular apertures θx and θy in the x and in the y direction, respec-
tively. In general, the angular aperture of the source is elliptical and it is defined
by the inequality:

13

θ2 ≤ θ2x cos
2 ϕs + θ2y sin

2 ϕs (1)

The source intensity distribution is assumed to be uniform within the solid angle
limited by this angular aperture.

source device file header

• Newdevice source

• name (string)

Commands

• SpectrumName name

– name (string): spectrum input device name;

• X val1 val2 val3

– val1 val2 val3 (real values) source x, y, z coordinates

• uk val1 val2 val3

– source orientation: ks components (local z axis direction, i.e. main
source direction);

– val1 val2 val3 (real values): ksx, ksy, ksz

• ui val1 val2 val3

– source orientation: is components (local x axis direction);

– val1 val2 val3 (real values): isx, isy, isz

• Divergence val1 val2

– beam divergence;

– val1 val2 (real values): θx, θy

14

• Size val1 val2 val3

– Source size; the source is modeled as a three-dimensional Gaussian dis-
tribution:

– val1 val2 val3 (real values): σx, σy, σz;

• Rotate val1 val2 val3 val4 val5 val6 val7

– rotation of the source around the axis passing through x0 and with di-
rection u:

– val1 val2 val3 (real values): x0, y0, z0;

– val4 val5 val6 (real values): u0, u0, u0;

– val7 (real value) rotation angle θ (degrees);

• End

– End of file.

If is is not perpendicular to ks, then xrmc will replace it with a vector parallel to
the same plane, but perpendicular to ks. If ks or is are not unit vectors then they
will be normalized by the program. The vector js is computed by the program, so
that is, js and ks constitute an orthonormal basis set.

3.2.4 The detector file

In general, the program can simulate two-dimensional array detectors with energy
binning for each pixel. A single element detector can be simulated as a special case
of array detector with only one pixel. The pixel shape can be defined as rectangular
or elliptical. The latter possibility is particularly useful when a round, single ele-
ment detector has to be simulated.
A local coordinate system is associated to the detector, specified by the vector po-
sition of its geometric center rd and by the orthonormal unit vectors id, jd and kd
(see Fig. 1), which are the directions of the local x, y, and z axis, respectively. The
local z axis is perpendicular to the detector surface, while the local x and y axes are
parallel to the detector rows and columns, respectively.
According to a variance reduction technique used in the code, each event is forced
to end with a photon that reaches a pixel of the detector (and its weight is multiplied
by a proper probability factor). The intersection between the last photon trajectory
and the pixel can be a random position on the pixel surface, or it can be forced to

15

be the midpoint of the pixel. The latter method is a purely deterministic approach,
and normally it should not be used.
The user has the possibility to simulate a statistical uncertainty on pixel counts
based on Poisson statistics. In the traditional Monte Carlo approach the number of
photons detected by each channel of each pixel is always an integer number. Us-
ing variance reduction techniques the events are weighted, therefore the estimated
number of detected photons is a real number. However it is possible to round it to
the closest integer number.
The weight associated to the probability that the last photon of an event reaches a
detector pixel is proportional to a geometric efficiency factor ε, which is related to
the solid angle from the interaction point to the pixel surface. If the last interaction
occurs at a distance from the pixel that is comparable or smaller than the pixel size,
ε can become very large. In order to avoid spikes in the signal on single pixels, it
is useful to restrict ε. The default value is 2π.
Two acquisition modalities are available:

1. fluence: each channel simply counts the number of photons that it detects;

2. energy fluence: each channel sums up the energy of the photons that it de-
tects.

The energy response of the detector can eventually be taken into account by using
the first modality with a sufficient number of energy bins and by a proper postpro-
cessing of the acquisition.

detectorarray device file header:

• Newdevice detectorarray

• name (string)

Commands

• SourceName name

– name (string): source input device name;

• NPixels val1 val2

– pixel number (Nx × Ny);

– val1 val2 (integers): number of columns (Nx) and rows (Ny);

16

• PixelSize val1 val2

– pixel size (Lx × Ly, cm);

– val1 val2 (real values): rectangle sides (Lx, Ly);

• Shape val

– pixel shape:

– val = 0: rectangular;

– val = 1: elliptical;

• dOmegaLim val

– cut on ε (if this entry is 0, then ε is set to the default value 2π);

– val (real value) ε;

• X val1 val2 val3

– val1 val2 val3 (real values) detector geometric center coordinates x, y,
z;

• uk val1 val2 val3

– detector orientation: kd components (local z axis direction, i.e. normal
with respect to the detector surface);

– val1 val2 val3 (real values): kdx, kdy, kdz

• ui val1 val2 val3

– detector source orientation: id components (local x axis direction);

– val1 val2 val3 (real values): idx, idy, idz

• ExpTime val

17

– val (real value): exposure time (seconds)

• PhotonNum val

– val (integer): multiplicity of simulated events per pixel;

• RandomPixelFlag val

– val (integer): enable random point on pixels (0/1)

• PoissonFlag val

– val (integer): enable Poisson noise on pixel counts (0/1)

• RoundFlag val

– val (integer): round pixel counts to integer (0/1)

• HeaderFlag val

– val (integer): use header in output file (0/1)

• AsciiFlag val

– val (integer): use binary or ascii output file format (0/1)

• Rotate val1 val2 val3 val4 val5 val6 val7

– rotation of the detector around the axis passing through x0 and with di-
rection u:

– val1 val2 val3(real values): x0, y0, z0;

– val4 val5 val6(real values): ux, uy, uz;

– val7 (real) rotation angle θ (degrees);

• PixelType val

18

– Pixel content type:

– val (integer): 0, 1, 2 or 3;

– 0: fluence;

– 1: energy fluence;

– 2: fluence with energy binning;

– 3: energy fluence with energy binning;

Only if energy binning is used, i.e. if pixel content type is 2 or 3:

• Emin val

– val (real): minimum binning energy;

• Emax val

– val (real): maximum binning energy;

• NBins val

– val (integer): number of energy bins;

• SaturateEmin val

– val (integer): saturate energies lower than Emin (0/1)

• SaturateEmax val

– val (integer): saturate energies greater than Emax (0/1)

• End
End of file.

If id is not perpendicular to kd, then xrmc will replace it with a vector parallel to
the same plane, but perpendicular to kd. If kd or id are not unit vectors then they
will be normalized by the program. The vector jd is computed by the program, so
that id, jd and kd constitute an orthonormal basis set.

19

3.2.5 The composition file

The materials that compose the sample are called phases. A composition file is
used to list all the phases and to characterize them by their mass density and by
their composition, i.e. the chemical formulas andweight fractions of the compounds
that compose them. Each phase is assumed to be homogeneous. Phases are referred
to by their user-defined names. There is a predefined phase named Vacuum with
mass density equal to zero and no elements. This is the phase that fill the universe.
If the user wants to simulate an experiment in a different medium (e.g. in air) he
should first define it. However, only a finite region of space can be filled by a
phase different from vacuum. The chemical formulas are parsed with the Com-
poundParser function of xraylib: examples of accepted formulas are H20 (water)
and Ca5(PO4)3F (fluor apatite).

composition file header

• Newdevice composition

• name (string)

Commands

• Phase name

– name (string): material name; define a new material;

• NCompounds val

– val (integer): number of compounds Ne in the phase;

• Compound1 w1 (string, real): chemical formula and weight percent of the
1st compound;

• …

• CompoundNc wNc (string, real): chemical formula and weight percent of the
N-th compound;

• Rho val

– val (real): mass density of the phase (g/cm³);

20

https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#wiki-compoundparser
https://github.com/tschoonj/xraylib/wiki/The-xraylib-API-list-of-all-functions#wiki-compoundparser

• End

– End of file.

3.2.6 The quadric array file

The sample geometry is described through a set of quadrics, which are used to
define the surfaces of solid objects. A quadric is a surface in the three-dimensional
space defined as the locus of zeros of a quadratic polynomial. The general quadric
is defined by the algebraic equation:

3∑
i,j=1

xiQijxj +
3∑

i=1

Pixi +R = 0 (2)

If we define x4 = 1, then the general quadric may be compactly written in vector
and matrix notation as:

xAxT = 0 (3)

where x =(x1 , x2 , x3 , x4), xT the transpose of x (a column vector) and A is a 4 x
4 matrix with Aij for i, j = 1,…,3, A4i = Ai4 = Pi and A44 = R. The matrix A must
be symmetric, thus Aij = Aji, � i, j = 1,…,4.
A quadric divides the space in two regions, one with xAxT > 0, the other with xAxT
< 0.
We will call those two regions space outside the quadric (or external space) and
space inside the quadric (or internal space), respectively, no matter whether the
quadric is closed or not. Whenever a unit vector normal to the quadric surface has
to be defined, by default we will assume that is is oriented toward the external space.
Examples of quadrics are planes, ellipsoids, cylinders.

quadricarray file header

• Newdevice quadricarray

• name (string)

Commands

• Quadric A11 A12 A13 A14 A22 A23 A24 A33 A34 A44

– Generic quadric defined by its elements contents. Since the matrix has
to be symmetric, only 10 elements are used.

• Plane x0 y0 z0 ux uy uz

21

– Plane containing the point (x0 , y0 , z0) with normal vector (ux , uy ,
uz).

• Ellipsoid x0 y0 z0 Rx Ry Rz

– Ellipsoid with principal axis parallel to the main axis, centered in (x0 ,
y0 , z0) with semi-axes Rx , Ry , Rz .

• CylinderX y z Ry Rz

– Cylinder having the main axis parallel to the x axis with coordinates y,
z on the yz plane, and having elliptical section with semi-axes Ry , Rz .

• CylinderY x z Rx Rz

– Cylinder having the main axis parallel to the y axis with coordinates x,
z on the xz plane, and having elliptical section with semi-axes Rx , Rz .

• CylinderZ x y Rx Ry

– Cylinder having the main axis parallel to the z axis with coordinates x,
y on the xy plane, and having elliptical section with semi-axes Rx , Ry .

• Translate Δx Δy Δz

– Translate the position of the last defined quadric by (Δx Δy Δz).

• Rotate x0 y0 z0 ux uy uz θ

– Rotate the last defined quadric around the axis passing through the point
(x0 , y0 , z0) and directed as (ux , uy , uz) by an angle θ (expressed in
degrees).

• TranslateAll Δx Δy Δz

– Translate the position of all previously defined quadrics by (Δx Δy Δz).

• RotateAll x0 y0 z0 ux uy uz θ

22

– Rotate all previously defined quadrics around the axis passing through
the point (x0 , y0 , z0) and directed as (ux , uy , uz) by an angle θ
(expressed in degrees).

• End

– End of file.

3.2.7 The three-dimensional object geometry description file

A solid object is defined as a solid shape delimited by a set of quadric surfaces
that separates the space inside from the space outside it. The quadrics delimiting
an object must be properly oriented, in such a way that their normal vectors are
directed outward with respect to the object itself.

• Only convex objects are allowed in XRMC. Non-convex shapes can be
built by combining convex objects. The demo files show some examples of
how to build non- convex shapes.

• The surfaces delimiting different objects can not be in contact with each
other. The users have to pay particular attention to this point, because the
code does not make any check on it. If the user wants two objects to be in
contact with each other (for instance when building non-convex shapes by
joining convex objects) a workaround is to separate them using two different
quadrics, very close to each other but separated by a small gap, in such a way
that the effect of the intermediate space on the radiation is negligible. The
demo files show some examples of this trick.

• An object may contain other objects, or it may be contained in another object,
as far as their delimiting surfaces are not in contact.

All objects must be contained in a finite region of space, called sample region.
The user is required to assign the phases (see the composition file) that are found
inside and outside the object. For this purpose one can use the phases defined in the
composition file, or from the NIST materials database. In the latter case, make sure
that all spaces are preceded by a backslash. This functionality is offered through
xraylibs GetCompoundDataNISTByName function.

geom3d device file header

• Newdevice geom3d

• name (string)

23

http://physics.nist.gov/cgi-bin/Star/compos.pl

Commands

• QArrName name

– name (string): quadricarray input device name;

• CompName name

– name (string): composition input device name;

• Object name

– name (string): 3d object name; defines a new object;

• phase-in-name

– name of the phase (material) inside the object;

• phase-out-name

– name of the phase (material) surrounding the object;

• Nq

– number of quadrics that define the object surface;

• quadric-name-1 quadric-name-2 … quadric-name-Nq

– names of the quadrics that define the object surface;

• End

– End of file.

24

3.2.8 The sample file

When a photon exits from the source or when it is produced by a scattering or fluo-
rescence emission process, its trajectory is characterized by its position vector rph
and by its direction vector uph. The program evaluates the intersection of this tra-
jectory with the quadric surfaces delimiting the objects, and divide it in Ns steps
with uniform phases. Each step is a segment of the trajectory delimited by its inter-
section with different objects. There are two possible modalities of extracting the
next interaction position:

1. extract the interaction position according to the interaction probability dis-
tribution along the trajectory, which is evaluated from the linear absorption
coefficient of the phases and from the steplengths of the paths;

2. extract a step at random using a random integer number 0 ≤ m < Ns , Extract
a random position on step m using a uniform probability distribution, and
multiply the weight associated to the event by a proper factor;

The first option reflects the traditional Monte Carlo approach. The second is some-
times used for variance reduction. It may be useful, for instance, when an object
that emits a relevant fluorescence signal, is surrounded by a strongly absorbing ma-
terial, in such a way that the probability of the incident radiation reaching such an
object is relatively low.

sample device file header

• Newdevice sample

• name (string)

Commands

• SourceName name

– name (string): source input device name;

• Geom3DName name

– name (string): geom3d input device name;

• CompName name

– name (string): composition input device name;

25

• WeightedStepLength val

– setting that determines the algorithm used for the extraction of the next
interaction position:

– val = 0 : method 1 described above;

– val = 1: method 2) described above;

• FluorFlag val

– activate Fluorescence (0/1); it can be useful to deactivate it in imaging
experiments where fluorescent emission is not relevant, and thereby to
save computational time;

• ScattOrderNum NI

– NI (integer): maximum scattering order (0: transmission, 1: first order
scattering or fluorescence emission, 2: second order scattering or fluo-
rescence emission, …)

• M1

– multiplicity of simulated events for order 0;

• …

• MNI

– multiplicity of simulated events for order NI ;

• End

– End of file.

As discussed previously, the total number of generated events is given by the prod-
uct of the multiplicities in the spectrum, in the interactions with the sample and in
the detector pixels.

26

3.2.9 The output file

By default, the output file is saved in raw binary format. The detector bin contents
are written in C double format (64 bit real). If you prefer to save the data in ascii for-
mat, you can use the AsciiFlag command, which is described in the detectorarray
file section.
The total number of entries is:

N. of scattering orders × N. of energy bins × N. of columns × N. of
rows

with the rows running faster.
If the HeaderFlag is set to 1 in the detector file, then the bin contents are preceded
by a 60- bytes-long header, also in binary format, containing the following infor-
mation:

• N. of scattering orders (C int format, 32 bit integer)

• N. of columns (C int format, 32 bit integer)

• N. of rows (C int format, 32 bit integer)

• Pixel size Sx (C double format, 64 bit real)

• Pixel size Sy (C double format, 64 bit real)

• Exposure time in sec. (C double format, 64 bit real)

• Pixel content type (C int format, 32 bit integer)

• N. of energy bins (C int format, 32 bit integer)

• Minimum bin energy (C double format, 64 bit real)

• Maximum bin energy (C double format, 64 bit real)

4 Advanced usage

This section covers some advanced topics that may be of interest to expert users.
Some of the devices that will be discussed here inherit (remember: all devices are
C++ objects) properties from other devices that have been explained in the User
guide.

27

4.1 Direction-dependent beam intensity and energy spectrum

These paragraphs describes special devices used to define a beam with direction-
dependent intensity and/or spectrum.

4.1.1 The anisotropicsource and the intensityscreen devices

The anisotropicsource and the intensityscreen devices are used to describe a source
with intensity that depends on the emission direction. Note that for these devices
the energy spectrum does not depend on the direction: if the user desires that not
only the intensity, but also the spectrum depends on the direction, he should rather
use the beamsource-beamscreen devices, described in the following section.
The anisotropicsource input file has exactly the same format as the source file, the
only differences being the device type, specified after the Newdevice command,
and an additional input device, of the intensityscreen type.

anisotropicsource device file header

• Newdevice anisotropicsource

• name (string)

Additional command

• IntensityScreenName name

– name (string): intensityscreen input device name;

The intensityscreen device represents the beam intensity distribution on an ideal
screen, located in an arbitrary position and with arbitrary orientation. The ideal
screen is divided in pixels. The intensity distribution is defined by specifying the
number of x-ray photons per seconds impinging on each pixel.

intensityscreen device file header

• Newdevice intensityscreen

• name (string)

Commands

• NPixels val1 val2

– pixel number (Nx × Ny);

28

– val1 val2 (integer values): number of columns (Nx) and rows (Ny);

• PixelSize val1 val2

– pixel size (Lx × Ly , cm);

– val1 val2 (real values): rectangle sides (Lx , Ly);

• X val1 val2 val3

– val1 val2 val3 (real values) screen geometric center coordinates x, y, z;

• uk val1 val2 val3

– orientation: kd components (local z axis direction, i.e. normal to the
screen surface);

– val1 val2 val3 (real values): kdx, kdy, kdz

• ui val1 val2 val3

– orientation: id components (local x axis direction);

– val1 val2 val3 (real values): idx, idy, idz

• InterpolFlag val

– val (integer): use interpolation inside pixels (0/1)

• ImageFile filename

– filename (string) name of the file containing the intensity distribution
on the screen pixels. The file should contain Nx × Ny entries (one for
each pixel) stored in C double format (64 bit real) with the x-running-
faster ordering scheme.

• Rotate val1 val2 val3 val4 val5 val6 val7

29

– rotation of the screen around the axis passing through x0 and with di-
rection u:

– val1 val2 val3(real values): x0, y0, z0;

– val4 val5 val6(real values): ux, uy, uz;

– val7 (real) rotation angle θ (degrees);

4.1.2 The beamsource and the beamscreen devices

The beamsource and the beamscreen devices are used to describe a source with
both the intensity and the energy spectrum that depends on the emission direction.
The beamsource input file has exactly the same format as the source file, the only
differences being the device type, specified after the Newdevice command, and the
input device, which is of type beamscreen instead of spectrum.

beamsource device file header

• Newdevice beamsource

• name (string)

Input device command The following command replaces the SpectrumName
command used in the source device.

• BeamScreenName name

– name (string): beamscreen input device name;

The beamscreen device represents the direction-dependent beam intensity and en-
ergy spectrum on an ideal screen, located in an arbitrary position and with arbitrary
orientation. The ideal screen is divided in pixels and energy bins. The intensity
distribution and the spectrum are defined by specifying, for each pixel and energy
bin, the number of x-ray photons per seconds impinging on that pixel with energy
inside that bin.

beamscreen device file header

• Newdevice beamscreen

• name (string)

30

Commands

• NPixels val1 val2

– pixel number (Nx × Ny);

– val1 val2 (integer values): number of columns (Nx) and rows (Ny);

• PixelSize val1 val2

– pixel size (Lx × Ly , cm);

– val1 val2 (real values): rectangle sides (Lx , Ly);

• X val1 val2 val3

– val1 val2 val3 (real values) screen geometric center coordinates x, y, z;

• uk val1 val2 val3

– orientation: kd components (local z axis direction, i.e. normal to the
screen surface);

– val1 val2 val3 (real values): kdx, kdy, kdz

• ui val1 val2 val3

– orientation: id components (local x axis direction);

– val1 val2 val3 (real values): idx, idy, idz

• InterpolFlag val

– val (integer): use interpolation inside pixels (0/1)

• PolarizedFlag val

– val (integer): unpolarized/polarized beam flag (0/1)

31

• LoopFlag val

– energy extraction method:

– val = 0: extract random energies on the whole spectrum;

– val = 1: loop over all energy bins;

• PhotonNum val

– val (integer): multiplicity of simulated events for each energy bin;

• Emin val

– val (real): minimum binning energy;

• Emax val

– val (real): maximum binning energy;

• NBins val

– val (integer): number of energy bins;

• ImageFile filename

– filename (string): name of the file containing the intensity/energy spec-
trum distribution on the screen pixels/bins. For unpolarized beam, the
file should contain Nbins ×Ny ×Nx entries (one for each pixel) stored in
C double format (64 bit real) with the x-running- faster ordering scheme.
For polarized beam, the file should contain 2 × Nbins × Ny × Nx entries,
with the x-polarized component in the first half and the y-polarized com-
ponent in the second half of the file.

• Rotate val1 val2 val3 val4 val5 val6 val7

– rotation of the screen around the axis passing through x0 and with di-
rection u:

32

– val1 val2 val3(real values): x0, y0, z0;

– val4 val5 val6(real values): ux, uy, uz;

– val7 (real) rotation angle θ (degrees);

4.2 Simulation of a realistic imaging detector response

A realistic imaging detector response can be simulated by issuing additional com-
mands in the detectorarray input file. Such commands are used to define the detec-
tor point spread function (PSF), the source size and the detector efficiency versus
energy.
The x/y projections of the detector PSF and of the source size are modeled by the
superposition of one or more Gaussian functions. Those function can be fixed (not
dependent on energy) or energy dependent. In the latter case, the parameters of all
Gaussians (height, mean, sigma) for each energy bin are loaded from a separate
file.

Additional commands

• ConvolveFlag val

– val (integer): Generates convoluted image (0/1);

• Z12 val

– val (real value): Distance between object plane and detector, used to
take into account source size in detector image convolution;

• EfficiencyFlag val

– val (integer): flag for using efficiency versus energy before convolu-
tion (0/1); to use it, ConvolveFlag MUST also be activated.

• EfficiencyFile filename

– filename: name of the input file holding the efficiency;

– file format (ascii):

– ε1: efficiency for the first energy bin

33

– …

– εNbins: efficiency for the last energy bin

• GaussPSFx N

– Gaussian model of detector PSF (x component): superposition of N
Gaussian functions (N = 0 : disabled);

– h1 x1 σ1: height, mean and standard deviation of the first Gaussian func-
tion;

– …

– hN xN σN : height, mean and standard deviation of the N-th Gaussian
function;

• GaussPSFy N

– Gaussian model of detector PSF (y component): superposition of N
Gaussian functions (N = 0 : disabled);

– h1 x1 σ1: height, mean and standard deviation of the first Gaussian func-
tion;

– …

– hN xN σN : height, mean and standard deviation of the N-th Gaussian
function;

• GaussPSFxBinFile N filename

– Energy dependent Gaussian model of detector PSF (x component): su-
perposition of N Gaussian functions (N = 0 : disabled);

– filename (string): name of the input file holding Gaussian function pa-
rameters; input file format (ascii): 3 N columns with height, mean and
sigma of the N Gaussian functions for each energy bin:

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : first energy bin

34

– …

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : last energy bin

• GaussPSFyBinFile N filename

– Energy dependent Gaussian model of detector PSF (y component): su-
perposition of N Gaussian functions (N = 0 : disabled);

– filename (string): name of the input file holding Gaussian function pa-
rameters; input file format (ascii): 3 N columns with height, mean and
sigma of the N Gaussian functions for each energy bin:

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : first energy bin

– …

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : last energy bin

• GaussSourceX N

– Gaussian model or source x size: superposition of N Gaussian func-
tions (N = 0 : disabled);

– h1 x1 σ1: height, mean and standard deviation of the first Gaussian func-
tion;

– …

– hN xN σN : height, mean and standard deviation of the N-th Gaussian
function;

• GaussSourceY N

– Gaussian model or source y size: superposition of N Gaussian func-
tions (N = 0 : disabled);

– h1 x1 σ1: height, mean and standard deviation of the first Gaussian func-
tion;

35

– …

– hN xN σN : height, mean and standard deviation of the N-th Gaussian
function;

• GaussSourceXBinFile N filename

– Energy dependent Gaussian model of source x size: superposition of N
Gaussian functions (N = 0 : disabled);

– filename (string): name of the input file holding Gaussian function pa-
rameters; input file format (ascii): 3 N columns with height, mean and
sigma of the N Gaussian functions for each energy bin:

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : first energy bin

– …

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : last energy bin

• GaussSourceYBinFile N filename

– Energy dependent Gaussian model of source y size: superposition of N
Gaussian functions (N = 0 : disabled);

– filename (string): name of the input file holding Gaussian function pa-
rameters; input file format (ascii): 3 N columns with height, mean and
sigma of the N Gaussian functions for each energy bin:

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : first energy bin

– …

– h1 x1 σ1 h2 x2 σ2 … hN xN σN : last energy bin

4.3 Radionuclides sources

XRMC provides access to xraylib's database of commonly used X-ray and gamma
emitting radionuclides. Instead of defining all the emitted energies and correspond-
ing intensities in a spectrum device, use the radionuclide device, which inherits
from the former.

36

radionuclide device file header

• Newdevice radionuclide

• name (string)

Commands

• Unit val

– Radioactive activity unit

– val (string): must be either mCi, Ci, GBq or Bq. mCi is the default.

• Activity val

– val (strictly positive real number): number of desintegrations per sec-
ond. 100 is the default.

• RadioNuclideSource val

– val (string): type of source. For a list of available sources, check out
the xraylib online calculator.

• LoopFlag val

– energy extraction method:

– val = 0: extract extract random energies on the whole spectrum;

– val = 1: loop on all lines and sampling points;

• LinePhotonNum val

– val (integer): multiplicity of events for each line in spectrum;

• End

– End of file.

37

http://lvserver.ugent.be

4.4 Free-space propagation phase contrast imaging

The x-ray phase contrast imaging techniques are based on the observation of inter-
ference patterns produced when an x-ray beam partially or totally coherent crosses
an object characterized by variation in the real part of the refractive index with po-
sition. In a typical setup for this type of experiment, the radiation produced by a
relatively small x-ray source acquires partial coherence during propagation in free
space, crosses an object placed at relatively large distance from the source, and
produces an image on an observation plane (screen).
The method used by XRMC for phase contrast imaging simulation is described in
ref. [4]. Such method can be used for monochromatic as well as for polychromatic
sources. Furthermore, while other methods are valid only in the approximation of
relatively large source-object distance, the method used by XRMC is suitable also
in the case of small source-object distance. On the other hand, the thin-sample ap-
proximation is used: assuming that the object is thin along the radiation propagation
direction, the deviation of the x-ray paths inside the object from straight lines can
be neglected.
Phase contrast imaging experiments can be simulated in XRMC by using the spe-
cial device phcdetector, which inherits all the variable names and commands of
the detectorarray device, but has additional commands specific for phase contrast
imaging. All the devices that can be used for imaging experiments can also be used
for phase contrast imaging, except for the detectorarray device, which is replaced
by the phcdetector device.
Note: the detector pixel size Lx × Ly must satisfy the inequality:

Lx × Ly ≪ Z12 × λ (4)

where Z12 is the object detector distance and λ is the radiation wavelength;

phcdetector device file header

• Newdevice phcdetector

• name (string)

Additional commands

• Z12 val

– val (real value): Distance between object plane and detector;

• NScreenBorder val1 val2

38

– additional rows and columns at the top, bottom, left and right sides of
the detector (NBx × NBy);

– val1 val2 (integer values): number of additional columns (NBx) at the
left and right sides, and additional rows (NBy) at the top and bottom
of the detector; the simulation is extended to those additional pixels in
order to avoid discontinuities at the border in the simulated phase con-
trast image. If you are not sure of which values you should use, simply
do not use this command, so that the default values will be used.

• NInterpBorder val1 val2

– additional rows and columns at the top, bottom, left and right sides of
the detector, used for interpolation (NIBx × NIBy);

– val1, val2 (integer values): number of additional columns (NIBx) at the
left and right sides, and additional rows (NIBy) at the top and bottom of
the detector; those additional pixels are not included in the simulation,
but they are used to interpolate the complex values of the transmission
function from the border of the simulated image to the flat field values,
to avoid discontinuities at the border in the simulated phase contrast
image. If you are not sure of which values you should use, simply do
not use this command, so that the default values will be used.

4.5 The XMI-MSIM plug-in

A plug-in was developed that allows xrmc to exploit some of the capabilities of the
XMI-MSIM package. This requires however, that when compiling XRMC, a full
installation of XMI-MSIM is already present on the system. In order to obtain XMI-
MSIM, the user is referred to XMI-MSIMs Download and installation instructions.
For users interested in writing plug-ins for XRMC, it is highly recommended to
have a look at the source code of the XRMC-XMI-MSIM plug-in for inspiration.

4.5.1 Energy dispersive x-ray fluorescence detector response function

XMI-MSIM contains a number of routines that allow one to generate a detector
response function for energy-dispersive x-ray fluorescence (ED-XRF) detectors.
This is includes support for the Gaussian detector broadening, escape peaks (flu-
orescence and Compton) as well as peak pile-up (sum peaks).
For a full description, the reader is referred to Schoonjans et al (2012).
Invoking this detector response function is done in XRMC through defining a de-
tectorconvolute device, which inherits from detectorarray.

39

https://github/tschoonj/xmimsim/wiki
https://github.com/tschoonj/xmimsim/wiki/Installation-instructions
http://dx.doi.org/10.1016/j.sab.2012.03.011

detectorconvolute device file header

• Newdevice detectorconvolute

• name (string)

Additional commands

• CrystalPhase name

– name (string): name of the phase (material) of the detector crystal;

• WindowPhase name

– name (string): name of the phase (material) of the detector window;

• CrystalThickness val

– val (real value): thickness (cm) of the phase (material) of the detector
crystal;

• WindowThickness val

– val (real value): thickness (cm) of the phase (material) of the detector
window;

• PulseWidth val

– val (real value): the time (s) necessary for the detector electronics to
process one incoming pulse.

– This parameter is optional: leave it out if the simulation of the pulse
pile-up is not required;

• FanoFactor val

– val (real value): measure of the dispersion of a probability dis- tribu-
tion of the fluctuation of an electric charge in the detector. Very much
detector type dependent;

40

• Noise val

– val (real value): the result of random fluctuations in thermally gener-
ated leakage currents within the detector itself and in the early stages
of the amplifier components. Contributes to the Gaussian broadening
(keV);

4.5.2 Generic x-ray tube emission spectrum: Ebel model

The spectrum_ebel device offered by the XMI-MSIM plug-in allows the user to
generate x-ray tube emission spectra based on a number of parameters. The model
that is implemented in XMI-MSIM is based on the work of Prof. Horst Ebel. More
information can be found in his 1999 and 2003 papers.
This device inherits from the spectrum device.

spectrum_ebel device file header

• Newdevice spectrum_ebel

• name (string)

Additional commands

• TransmissionFlag (0/1)

– Setting this parameter to 1 will assume that the tube is of the transmis-
sion type, i.e. with cathode and window on opposing sides of the anode.

• TubeCurrent val

– val (real value): the current of the x-ray tube (mA);

• TubeVoltage val

– val (real value): the operating voltage of the x-ray tube (V);

• ElectronAngle val

– val (real value): angle of electron incidence with respect to the anode
target surface (degrees);

• XrayAngle val

41

http://dx.doi.org/10.1002%2F%28SICI%291097-4539%28199907%2F08%2928%3A4%3C255%3A%3AAID-XRS347%3E3.0.CO%3B2-Y
http://dx.doi.org/10.1002/xrs.610

– val (real value): angle of x-ray take-off with respect to the anode target
surface (degrees);

• IntervalWidth val

– val (real value): width in keV of the intervals that make up the contin-
uous part of the generated spectrum;

• AnodeMaterial element

– element (string): the material that the anode is made of;

• AnodeDensity val

– val (real value): the density of the anode material (g/cm³);

• AnodeThickness val

– val (real value): the thickness of the anode material (cm);

– This parameter is only used when operating in transmission mode

• WindowMaterial element

– element (string): the material that the tube window is made of;

• WindowDensity val

– val (real value): the density of the tube window material (g/cm³);

• WindowThickness val

– val (real value): the thickness of the tube window material (cm);

• FilterMaterial element

– element (string): the material that the tube filter is made of;

42

• FilterDensity val

– val (real value): the density of the tube filter material (g/cm³);

• FilterThickness val

– val (real value): the thickness of the tube filter material (cm);

5 Description of the XRMC classes

In this section we will cover all of the C++ classes that are defined in XRMC, and
that can be extended by the users in order to create custom devices.

5.1 Vector and matrix operations

Many of the calculationsmade by the program involve operations on three-dimensional
vectors and on 3 × 3 or 4 × 4 real matrices. For such reason, three specialized classes,
vect3, matr3 and matr4 have been implemented. Those classes exploit the operator
overloading feature of the C++ programming language in order to represent vector
and matrix operations in a natural and readable manner. For instance, a change of
coordinates from the local coordinate system associated to a device to the absolute
coordinate system of XRMC can be expressed by the vector operation:

r = r0 + ui · x+ uj · y + uk · z (5)

with r the the position vector of a point relative to the absolute coordinate system, r0
the position vector of the local coordinate system origin, ui , uj and uk the direction
vectors of the local coordinate system axis and x, y and z the coordinates of the point
relative to the local coordinate system. This operation can be expressed using the
vect3 class as:

r = r0 + ui · x+ uj · y + uk · z (6)

with r, ui, uj and uk objects of the class vect3, x, y and z are of the C/C++ type
double, and ``+'' and ``*" are overloaded operators of the vect3 class.
An alternative approach was based on more general matrix and vector base classes,
and derived classes for specific dimensions. However, the computation time over-
head of this approach was relevant, therefore the final choice was to use specialized
classes for three and four dimensions.
The vect3 class member variables are the three vector components, while its main
member functions are:

• product/division of a vector by a scalar;

43

• sum and difference between vectors;

• scalar product of two vectors;

• vector product;

• modulus;

• vector normalization;

The first three are represented by the C/C++ algebraic operators, while the vector
product is represented by the symbol ``ˆ''.
The matr3/matr4 member variables are the 9/16 matrix elements, while their main
member functions are:

• matrix multiplication;

• matrix transposition operator;

• multiplication of a matrix by a vector;

• rotation matrix of an angle θ around an axis with direction u;

5.2 The photon class

XRMC uses a specialized photon class to describe x-ray photon transport and inter-
action with matter. A local coordinate system is associated with the photon, with
the direction of the three axes x, y, and z defined by three unit vectors iph, jph, kph
, with kph the photon direction, iph the polarization vector, which is always perpen-
dicular to the photon direction, and jph, the unit vector perpendicular to both iph
and kph. The other variables that describe the photon state are its energy E and its
weight w.
The main member variables of the photon class are:

• double w: event weight;

• double E: photon energy;

• vect3 x: photon position vector;

• vect3 ui, uj, uk: direction vectors of the photon local coordinate system;

The main member functions of the photon class are:

44

• int MoveForward(double step_length): moves the photon in the direction uk
by a distance step_length;

• int ChangeDirection(double theta, double phi): updates the photon direction
using the polar angle theta and the azimuthal angle phi in the local coordinate
system;

• int MonteCarloStep(sample Sample, int iZ, int *iType): evaluates the photon
next interaction atomic number, type and position;

• int CSInteractions(int Z, double mu_interaction, double cs_tot): evaluates
the cross sections of the three interaction types with the extracted element;

• int InteractionType(double *cs_interaction, double cs_tot): extracts the inter-
action type (elastic/inelastic scattering or fluorescence);

• int SetFluorescenceEnergy(int Z): set the photon energy to that of the fluo-
rescent emission line;

• int Scatter(int Z, int interaction_type); checks the interaction type and launches
the corresponding method;

• int Scatter(int Z, int interaction_type, vect3 v_r): analogous to the previous
function, but with the photon forced to have the direction v_r;

• int Fluorescence(): generates a fluorescent emission process;

• int Coherent(int Z): generates an elastic scattering process;

• int Incoherent(int Z): generates an inelastic scattering process.

5.3 The device and bodydevice classes

In XRMC the term device refers to a C++ object that is created in order to be used
by the simulation, and whose parameters are loaded from the corresponding file.
It does not necessarily correspond to a physical device. For instance, the phase
(material) array and the sample are considered to be devices. The term device is
also the name of the abstract base class from which all concrete device classes are
derived. The member variables of the device class are:

• the device name;

• the device type;

45

• an index for the loop on the events;

The main virtual methods of the class are:

• the ImportDevice method, used to connect a device to one or more input de-
vices through a device map;

• the Load method, used to load the device parameters from an input file;

• the SetDefault method, which sets default values for device parameters;

• the Begin, Next and End methods, used to control the loop on the events;

• the Run method;

• the Save method, which saves the device output to a file;

The last two methods are not used by all devices. Only the detectorarray device has
implemented them, in the current version of the package.
Another important abstract class used in XRMC, derived from the device class, is
the bodydevice class. Besides the device member variables and functions, a body-
device is characterized by a position and a local coordinate system, through the
following member variables:

• vect3 X: bodydevice position;

• vect3 ui, uj, uk: local coordinate system axis directions.

The classes derived from the bodydevice class are the basesource and detectorarray
classes. The basesource class is an abstract class for x-ray sources. It is the base
class for all classes that can send x-ray photons to other devices, which in the current
version of the code are the source class (which can send photons to the sample or
to the detector devices) and the sample class (which can send photons to another
sample or to a detector devices). In future releases of the program, other classes
derived from the basesource class could be used to represent optical elements, such
as x-ray mirrors, multilayers and x-ray lenses.
The methods of the basesource class are:

• the ModeNum method, used to specify the number of modes the device can
work as. With regard to the sample derived class, it refers to the number of
scattering orders used in the simulation;

• the Out_Photon method, used to send a photon to the output device;

46

• the Out_Photon_x1_ method, used to generate an event with a photon forced
to be directed toward the position x1, specified by the output device;

On the other hand, the concrete classes that are directly derived from the abstract
device class are the composition, spectrum, and geom3d classes.
Each device can be connected to one or more input devices. The following figure
shows schematically how the concrete devices used in a standard setup are inter-
connected. The classes of those devices are described in the following sections.

!
Figure 1: C++ classes associated to the main XRMC devices and connections used
in a standard setup.

5.4 The source class

The current version of the code assumes that the x-ray beam is produced by a point
source or by an extended source with a three-dimensional Gaussian distribution. A
local coordinate system is attached to the source, which is determined by the vector
position of the origin rs and by the orthonormal unit vectors is , js and ks , which
correspond to the directions of the local x , y , and z axis, respectively. The local z
axis represents the main source direction, while the local x and y axes are used to
define the beam polarization and angular aperture. Let θs and φs be the polar and
azimuthal angle, respectively, relative to the source coordinate system. The user can
specify the angular apertures θx and θy in the x and in the y direction, respectively.
In general, the angular aperture of the source is elliptical and it is defined by the
inequality:

θ2 ≤ θ2x cos
2 ϕs + θ2y sin

2 ϕs (7)

The source intensity distribution is assumed to be uniform within the solid angle
delimited by this angular aperture.
The main member variables specific of the source class (not belonging to its base
classes) are the following:

47

• spectrum *Spectrum: pointer to the input spectrum device;

• string SpectrumName: name of input spectrum device;

• double Thx, Thy: beam divergence (θx and θy);

• double Omega: source aperture solid angle;

• double Sigmax, Sigmay, Sigmaz: source size in the local coordinate system.

The main member functions specific of the source class are:

• double CosThL(double phi); maximum value of the polar angle θ for a spec-
ified value of φ;

• int PhotonDirection(photon *Photon, int pol): extract the initial direction and
polarization of a photon;

• int SetPhotonAxes(photon *Photon, int pol): build the photon local axis
based on its direction and polarization;

• double POmega(vect3 vr): probability per unit solid angle that a photon has
direction vr .

5.5 The spectrum class

The energy spectrum is modeled as the sum of two components: a set of discrete
lines and a continuous component. The radiation can be unpolarized, partially po-
larized or completely polarized. The lines can have a Gaussian or a Dirac δ distri-
bution (the latter one being simply a particular case of Gaussian distribution with
σ = 0). Each line is specified by its mean energy, its intensity (two components if
polarized), and its standard deviation.
The continuous component is defined by N samples at different energies and the
corresponding height of the spectral distribution.
The main member variables of the spectrum class are the following:

• int PolarizedFlag: flag for polarized(1) / unpolarized(0) beam;

• int LoopFlag: flag for loop on all lines and all intervals of the spectrum;

• int RandomEneFlag: flag for extracting random energies in the intervals;

• int ResampleFlag: flag for resampling the continuous spectrum;

48

• int EneContinuousNum: number of sampling points in the continuous spec-
trum;

• double *ContinuousEne: energies of sampling points;

• double *ContSIntensity[2]: intensity at sampling points for the two polariza-
tion components;

• double ContinuousEnergyRange: energy range of the continuous spectrum;

• double ContinuousIntensity: total continuous intensity;

• double MaxIntensity: maximum continuous intensity;

• double *IntervalIntensity[2]: intensities of the intervals for the two polariza-
tion components;

• double *IntervalWeight[2]: weights of the intervals for the two polarization
components;

• double *IntervalCumul: cumulative distribution of the intervals;

• int EneLineNum: number of discrete lines of the spectrum;

• double *LineEne: energies of the discrete lines;

• double *LineSigma: widths (sigma) of the discrete lines;

• double *LineIntensity[2]: intensities of the discrete lines for the two polar-
ization components;

• double DiscreteIntensity: total intensity of the discrete spectrum;

• double *LineWeight[2]: weights of the discrete lines for the two polarization
components;

• double *LineCumul: cumulative distribution of the lines;

• int ResampleNum: number of resampling points of the continuous spectrum;

• double Emin, Emax: minimum and maximum resampling energy;

49

• int ContinuousPhotonNum: number of events to be extracted for each inter-
val;

• int ContinuousPhotonIdx: index of the event extracted for the interval;

• int LinePhotonNum: number of the events to be extracted for each discrete
line;

• int LinePhotonIdx: index of the event extracted for the line;

• int PolIdx: index of polarization type (0: x, 1: y);

• int ModeIdx: mode index: continuous spectrum (0) or discrete lines(1);

• int IntervalIdx: index of the interval of the continuous spectrum;

• int LineIdx: index of the discrete line;

• double TotalIntensity: total intensity;

The main member functions specific for the spectrum class are the following:

• int ExtractEnergy(double weight, double Energy, int *polarization): gener-
ates a random energy value and polarization type;

• int ContinuousRandomEnergy(double Energy, int polarization): generates a
random energy value from the continuous spectrum;

• int ExtractSpectrum(double trial_energy, double x_intensity, double y_intensity):
returns the intensity of the continuous spectrum at the given energy value;

• int DiscreteRandomEnergy(double Energy, int polarization): generates a ran-
dom energy value from the discrete part of the spectrum;

• int IntervalRandomEnergy(double *E, int interval_idx, int pol_idx): extract
the energy value and polarization type from a specified interval of the con-
tinuous spectrum distribution;

• int Resample(): method for resampling the continuous spectrum.

5.6 The phase class

The sample is composed of a number of materials called phases. Each phase is
assumed to be homogeneous. Each phase is characterized by the number of atomic

50

species that define it, through a list of the atomic numbers and weight fractions of
these species, and by its mass density;
The main member variables of the phase class are:

• int Nelem: number of elements in the phase;

• double Rho: mass density of the phase in g/cm³;

• int *Z: atomic number array;

• double *W: weight fraction array;

• double *MuAtom: atomic interactions total cross section array;

• double LastMu: linear absorption coefficient calculated at the current energy.

The main member functions are:

• int Mu(double E): evaluates the absorption coefficient at energy E;

• int AtomType(int Z, doublemu_atom): extract the atomic species with which
the interaction will occur;

5.7 The composition class

The composition class contains an array of the phases used by the simulation.
Its main member variables are:

• int Nphases: number of phases;

• int MaxNPhases: maximum number of phases;

• phase *Ph: phase array;

• phase_map PhaseMap: map of phases with their names.

The main member function specific of this class is:

• int Mu(double E): evaluates the absorption coefficient of each phase.

5.8 The quadric class

The sample geometry is described through a set of quadric surfaces, which are
used to define the surfaces of solid objects. A quadric is a surface in the three-
dimensional space defined as the locus of zeros of a quadratic polynomial.
The main member functions of the quadric class are:

51

• matr4 Matr: 4 × 4 real matrix;

• int Ninters: number of intersection of a trajectory with the quadric;

• double tInters[2]: parametric coordinates of the intersections;

• int Enter[2]: crossing directions: from outside to inside or viceversa.

The main member functions of the quadric class are:

• double Prod3(double x, double y): evaluates the quadratic form Aijxiyj on
3d vectors;

• double Prod4(double x, double y); evaluates the quadratic form Aijxiyj on
4d vectors;

• int Inside(vect3 x): checks if x is inside (0) or outside (1) the quadric;

• int Ellipsoid(double x0, double a): builds an ellipsoid quadric;

• int Plane(double x0, double u): builds a plane quadric;

• int CilinderX(double x0, double a): builds a cylinder parallel to the x axis;

• int CilinderY(double x0, double a): builds a cylinder parallel to the y axis;

• int CilinderZ(double x0, double a): builds a cylinder parallel to the z axis;

• int Intersect(vect3 x0, vect3 u): intersections of a line with the quadric;

• int Transform(matr4M): congruence transform of the quadric with matrixM;

• int SetElem(int i, int j, double elem): sets Aij and Aji to the value elem.

5.9 The quadricarray class

The quadricarray class contains an array of the quadrics used by the simulation. Its
main member variables are:

• int Nquadr: number of quadrics in the array;

• quadric *Quadr: pointer to the quadric array;

• quadric_map QuadricMap: map of the quadrics with their names.

52

5.10 The qvolume class

A solid object is defined as a solid shape demarcated by a set of quadric surfaces
that separates the space inside from the space outside it. The quadrics limiting an
object must be properly oriented, in such away that their normal vectors are directed
outward with respect to the object itself.
In the current version of the implementation, objects must be convex: the user is
expected to take care of splitting non-convex objects into convex ones when using
them in the simulation.
An object may contain other objects, or it may be contained into another object, as
far as their limiting surfaces are not in contact.
The class used in XRMC to represent three-dimensional objects is called qvolume.
The member variables of this class are:

• int Nquadr: number of quadrics delimiting the object;

• int iPhaseIn: index of the phase inside the object;

• int iPhaseOut: index of the phase surrounding the object;

• string PhaseInName: name of the phase inside the object;

• string PhaseOutName: name of the phase surrounding the object;

• quadric **Quadr: array of pointers to the quadrics delimiting the object.

Its main member function is:

• int Intersect(vect3 x0, vect3 u, double t, int iph0, int iph1, int n_inters):
method for finding the intersections of a line with the object.

5.11 The geom3d class

The geom3d class contains an array of the three-dimensional objects used in the
simulation.
Its main member variables are:

• quadricarray *Qarr: array of quadrics used in the geometric description;

• string QarrName : quadricarray input device name;

• composition *Comp: input composition device;

• string CompName: composition input device name;

53

• int NQVol: number of 3d objects used in the geometric description;

• intMaxNQVol: maximum number of 3d objects in the geometric description;

• qvolume *Qvol: array of 3d objects;

• string **QvolMap: map of the quadrics delimiting the objects.

The main method specific for the geom3d class is:

• int Intersect(vect3 x0, vect3 u, double t, int iph0, int iph1, int n_inters):
method for finding the intersections of a straight line with all quadrics de-
marcating the three-dimensional objects.

5.12 The path class

When a photon leaves the source or when it was produced by a scattering or flu-
orescence emission process, it follows a straight trajectory defined by its position
vector rph and by its direction vector uph. The program evaluates the intersection of
this trajectory with the quadric surfaces demarcating the objects, and divides it into
Ns steps with uniform phases. Each step is a segment of the trajectory delimited
by its intersection with different objects. The path class holds information about
the intersection of a trajectory with the quadrics and about the segments between
consecutive intersections.
The main member variables of the path class are:

• int Nsteps: number of intersections of a trajectory with all the quadrics in the
sample;

• double *t: array of the intersections (distances from the starting coordinate);

• double *Step: step lengths between consecutive intersections Si;

• int *iPh0: array of the entrance phase indexes;

• int *iPh1: array of the exit phase indexes;

• double *Mu: absorption coefficient at each step μi;

• double MuL: sum of μi × Si;

• double *SumMuS: cumulative sum of μi × Si.

The main member functions are:

54

• int StepMu(composition *comp): evaluates the absorption coefficient at each
step of the intersection;

• double StepLength(int step_idx, doubleweight): extracts the next interaction
position using the standard MC approach;

• double WeightedStepLength(int step_idx, double weight): extract the next
interaction position using the weighted steplength approach.

5.13 The sample class

The sample class is a container used to join the information about the sample com-
position, the geometrical description and the type of interactions that can occur in
the sample. The main member variables of this class are:

• basesource *Source: input source device;

• string SourceName: input source name;

• geom3d *Geom3D: input geom3d device;

• string Geom3DName: input geom3d name;

• composition *Comp: input composition device;

• string CompName: input composition device name.

• path *Path: object storing all info about intersections;

• int ScattOrderNum: number of scattering orders;

• int *PhotonNum: event multiplicity for each scattering order;

• int ScattOrderIdx: scattering order index;

• int PhotonIdx: event index.

The main member functions specific of the sample class are:

• int Intersect(vect3 x0, vect3 u); evaluates intersection of a trajectory with the
sample objects;

• double LinearAbsorption(vect3 x0, vect3 u): evaluates the absorption coef-
ficient at each step of the intersections;

55

• int Out_Photon_x1(photon *Photon, vect3 x1): generates an event with a
photon forced to end on the point x1.

5.14 The detectorarray class

In general, the program can simulate two-dimensional array detectors with energy
binning for each pixel. A single element detector can be simulated as a special case
of array detector with only one pixel. The pixel shape can be defined as rectangu-
lar or elliptical. The latter possibility is particularly useful when a round, single
element detector has to be simulated.
A local coordinate system is associated with the detector, specified by the vector
position of its geometric center rd and by the orthonormal unit vectors id, jd and kd
(see Fig. 2), which are the directions of the local x , y , and z axis, respectively. The
local z axis is perpendicular to the detector surface, while the local x and y axes are
parallel to the detector rows and columns, respectively.

	

Figure 2: The standard experimental setup simulated by XRMC consists of an x-
ray source, a sample and a detector (two-dimensional array or single element). A
local coordinate system is attached to the source and to the detector. rs and rd are
the position vector of the source and of the detector geometric center, respectively.
is, js and ks are the directions of the source local x , y , and z axis, respectively. id,
jd and kd are the directions of the detector local x , y , and z axis, respectively. The
detector local z axis is perpendicular to the detector surface, while the local x and y
axes are parallel to the detector rows and columns, respectively.

Two acquisition methods are available:

1. fluence: each channel simply counts the number of photons that it detects;

56

2. energy fluence: each channel sums up the energy of the photons that it de-
tects.

The energy response of the detector can eventually be taken into account through
using the first method with a sufficient number of energy bins and if a proper post-
processing of the acquisition is performed.
The main member variables of the detectorarray class are:

• basesource *Source: input device (typically the sample device);

• string SourceName: name of the input device;

• int NX, NY, N: number of rows (NY), columns (NX) and pixels (NX × NY);

• double PixelSizeX, PixelSizeY, PixelSurf: pixel size and surface (cm²) ;

• int Shape: pixel shape (0: rectangular, 1: elliptical);

• vect3 *PixelX: pixel coordinates array;

• double ***Image: acquired image array;

• double ExpTime: exposure time (seconds);

• int PhotonNum: multiplicity of simulated events per detector pixel;

• int Nbins: number of energy bins;

• int PixelType: pixel content type: 0: fluence, 1: energy fluence, 2: fluence
with energy binning, 3: energy fluence with energy binning;

• int SaturateEmin: flag to saturate energies lower than Emin;

• int SaturateEmax: flag to saturate energies greater than Emax;

• double Emin, Emax: minimum and maximum bin energy

The main member functions are:

• int Acquisition(): run the acquisition;

• int Clear(): clear the detector pixel bin contents;

57

6 Examples

The examples can be found after unpacking the tarball in the subdirectories of ex-
amples. The examples are described by comments in the corresponding input files.
To run an example, go to the corresponding subdirectory and type the command:

xrmc input.dat

At the end of the simulation, the output will be stored in the file image.dat (or
output.dat for the fluor_layers example). The output of the examples are either
images in raw binary format or measured spectra in ascii format. The raw binary
images can be opened with any image visualization program able to import such
format. For instance, the figures in this document have been produced using ImageJ,
which is a public domain image processing program, freely available for several
platforms. In case you want to open the output images of the examples using this
program, select from the menu:

file → import → raw…

Select the image and use the following settings in the import form:

• Image type: 64-bit real;

• Width: N. of columns;

• Height: N. of rows;

• Offset to first image: 60 if the image contains the header, 0 otherwise;

• Number of images: N. of scattering orders (1 if only transmission was simu-
lated);

• Little endian byte order: depends on the architecture of your system;

6.1 Cylindrical shell

Directory: cylind_shell
To simulate a cylindrical shell using only convex objects, two objects have been
used:

• An external full cylinder, delimited by two planes;

• An internal empty cylinder (the phase inside it is vacuum, phase index=0),
delimited by other two planes very close to those of the external cylinder but
separated from them by a small gap

The following figure shows the output image. Image size: 400 × 400

58

Figure 3: Example of simulation of radiographic images of a cylindrical shell. This
example is described by comments in the corresponding input files.

6.2 Star shapes

Directory: star1 and star2
In this example we will demonstrate two ways to generate a five-pointed star shape.
A first method consists of defining an outer pentagon (0 on the subfigure a) that
receives the phase with the composition of interest. Next, five triangles are defined
that are positioned within the pentagon, and are associated with the Vacuum phase.
After ensuring that the gap between the pentagon and the adjacent sides of the tri-
angles is sufficiently small, the simulation yields the expected five-pointed star.
Subfigure b shows the different planes that were required to obtain this model. All
objects are delimited by two planes parallel to the plane of the figure. The output
image is shown in the next figure. Image size: 400 × 400

59

Figure 4: Schematic representations of two ways of building a star shape by com-
bining convex objects. In the quadric definition files, the planes between adjacent
objects are separated by a very small gap, however in this figure their separation
is increased for clarity. (a) Geometrical objects used to compose the star shape
described in example 2. (b) Planes used to define the geometrical object surfaces
described in example 2. (c) Geometrical objects used to compose the star shape
described in example 3. (d) Planes used to define the geometrical object surfaces
described in example 3. All objects are delimited by two planes parallel to the fig-
ure plane. Those examples are described by comments in the corresponding input
files.

The secondmethod considers a different approach (subfigures c and d): the concave
star is assembled from 6 convex objects (5 triangles and 1 pentagon). All 6 are
associated with the phase with the composition of interest. As with the first method,
all objects are delimited by two planes parallel to the plane of the figure.

6.3 Different types of quadrics

Directory: quadrics
Shown in the next figure. Image size: 400 × 400

6.4 A wheel shape

Directory: wheel
A wheel is built by combining different cylinders and using the rotation commands.
The output image is shown in the next figure. Image size: 400 × 400

60

Figure 5: Example of simulation of a radiographic image: star shape

6.5 Objects with different compositions

Directory: materials
Four cylinders having different compositions (polymethyl methacrylate, adipose
tissue, water, bone-equivalent plastic) and placed inside a polymethyl-methacrylate
frame, are simulated.
The following figure shows the output image. Image size: 400 × 400

6.6 Anisotropicsource and intensityscreen

Directory: anisotropicsource
The sample simulated here is a cylinder, as was already discussed in a previous
section. The intensity distribution is produced by a program in the sample direc-
tory that can obtained by compiling the intensityscreenimage.c_ file. In this case

61

Figure 6: Example of simulation of a radiographic image: a thin spherical shell
containing different types of quadrics

it is assumed that the (ideal) screen is placed at 115 cm removed from the source
and divided in 100 × 100 pixels. The intensity on this ideal screen is distributed
according to a two-dimensional Gaussian function with σx = 4 cm and σy = 2 cm. A
README file can be found in the directory of this example containing instructions
on how to compile and run the program.
The output image is shown in the following figure. Image size: 400 × 400.

6.7 Beamsource and beamscreen

Directory: beamsource
The sample simulated here is a cylinder, as was already discussed in a previous
section. The program beamscreenimage.c_ produces the file with the intensity and

62

Figure 7: Example of simulation of a radiographic image: a wheel

energy distribution on an ideal screen placed at 115 cm distance from the source
and divided in 100 × 100 pixels. The intensity on this ideal screen is distributed
according to a two-dimensional Gaussian function, with σx = 4 cm and σy = 2 cm.
The energy spectrum depends on the radial distance r from the screen center, and it
is a gaussian function with σ = 4 keV and centered in

Ec = Ec0 + (Ec1 − Ec0)×
r

L
(8)

where Ec0 = 50 keV, Ec1=100 keV and L is the half-side of the screen. A README
file in the same directory explains how to compile and run the program beam-
screen_image.c.
The simulation can be run by typing the command:

xrmc input.dat

63

Figure 8: Example of simulation of a radiographic image: four cylinders having
different compositions and placed inside a frame.

The output image is stored in the file image.dat.
The file spectrum_detector.dat defines an energy sensitive detector with 25 energy
bins, which can be used to visualize the intensity as a function of the energy. The
simulation can be run by typing the command:

xrmc input_spectrum.dat

The results are stored in the file image_spectrum.dat, which contains a stack of 25
images, one for each energy bin. The following igure shows the output image for
the central bin (energy between 74 and 76 keV). Image size: 400 × 400

64

Figure 9: Example of image produced using the anisotropicsource/intensityscreen
devices. This example is described by comments in the corresponding input files.

6.8 Free-propagation phase contrast imaging

Directory:
The sample is a 100 mm diameter PMMA (Polymethyl methacrylate) wire. The
source-object distance z1 and the object-detector distance z12 are 23 m and 3.5 m,
respectively. The source size is 100 mm FWHM (42.5 mm standard deviation).
The detector pixel size is 0.5 mm. The source is monochromatic, with E = 17 keV.
The unconvoluted image is stored in the file image.dat. The image convoluted to
take into account the source size is stored in the file convoluted_image.dat. The
following figure shows the unconvoluted and the convoluted images. Image size:
800 × 800

65

7 References and addtional resources

7.1 Bibliography

• Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy ex-
periments. Spectrochimica Acta Part B, 59, 2004. DOI

• A library for X-ray matter interaction cross sections for X-ray fluorescence
applications. A. Brunetti, M. Sanchez del Rio, B. Golosio, A. Simionovici
and A. Somogyi. Spectrochimica Acta B, 59(10-11), 1725-1731, 2004. DOI

• The xraylib library for X-ray--matter interactions. Recent developments. T.
Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. A. Solé, C. Fer-
rero and L. Vincze. Spectrochimica Acta Part B, 66(11-12), 776-784, 2011.
DOI

• Phase contrast imaging simulation and measurements using polychromatic
sources with small source-object distances. B. Golosio, P. Delogu, I. Zanette,
M. Carpinelli, G. L. Masala, P. Oliva, A. Stefanini, and S. Stumbo. Journal
of Applied Physics, 104(9), 2008. DOI

• AGeneralMonte-Carlo Simulation of Energy-DispersiveX-ray-Fluorescence
Spectrometers Part 1. Unpolarized Radiation, Homogeneous Samples. Las-
zlo Vincze, Koen Janssens and Freddy Adams. Spectrochimica Acta Part B,
48(4), 553-573, 1993. DOI

• AGeneralMonte-Carlo Simulation of Energy-DispersiveX-ray-Fluorescence
Spectrometers Part 2. Polarizedmonochromatic radiation, homegeneous sam-
ples. Laszlo Vincze, Koen Janssens, Fred Adams, M.L. Rivers and K.W.
Jones. Spectrochimica Acta Part B, 50(2), 127-147, 1995. DOI

• AGeneralMonte-Carlo Simulation of Energy-DispersiveX-ray-Fluorescence
Spectrometers Part 3. Polarized polychromatic radiation, homogeneous sam-
ples. Laszlo Vincze, Koen Janssens, Fred Adams and K.W. Jones. Spec-
trochimica Acta Part B, 50(12), 1481-1500, 1995. DOI

• AGeneralMonte-Carlo Simulation of Energy-DispersiveX-ray-Fluorescence
Spectrometers Part 4. Photon scattering at highX-ray energies. LaszloVincze,
Koen Janssens, Bart Vekemans and Fred Adams. Spectrochimica Acta Part
B, 54(12), 1711-1722, 1999. DOI

• AGeneralMonte-Carlo Simulation of Energy-DispersiveX-ray-Fluorescence
Spectrometers Part 5. Polarized radiation, stratified samples, cascade effects,
M-lines. Tom Schoonjans, Laszlo Vincze, Vicente Armando Solé, Manuel

66

http://dx.doi.org/10.1016/j.sab.2004.03.016
http://dx.doi.org/10.1016/j.sab.2004.03.014
http://dx.doi.org/10.1016/j.sab.2011.09.011
http://dx.doi.org/10.1063/1.3006130
http://dx.doi.org/10.1016/0584-8547%2893%2980060-8
http://dx.doi.org/10.1016/0584-8547%2894%2900124-E
http://dx.doi.org/10.1016/0584-8547%2895%2901361-X
http://dx.doi.org/10.1016/S0584-8547%2899%2900094-4

Sanchez del Rio, Philip Brondeel, Geert Silversmit, Karen Appel, Claudio
Ferrero. Spectrochimica Acta Part B, 70, 10-23, 2012. DOI

• AGeneralMonte-Carlo Simulation of Energy-DispersiveX-ray-Fluorescence
Spectrometers Part 6. Quantification through iterative simulations. Tom
Schoonjans, Laszlo Vincze, Vicente Armando Solé, Manuel Sanchez del Rio,
Karen Appel, Claudio Ferrero. Spectrochimica Acta Part B, 82, 36-41, 2013.
DOI

7.2 Useful links

• xraylib

• XMI-MSIM

67

http://dx.doi.org/10.1016/j.sab.2012.03.011
http://dx.doi.org/10.1016/j.sab.2012.12.011
https://github.com/tschoonj/xraylib/wiki
https://github.com/tschoonj/xmimsim/wiki

Figure 10: Example of image produced using the beamsource/beamscreen devices.
This image represents the central energy bin (energy between 74 and 76 keV). This
example is described by comments in the corresponding input files.

68

a) b)

c) d)

Figure 11: Example of phase-contrast imaging experiment simulation. The sample
is a 100 mm diameter PMMA (Polymethyl methacrylate) wire. The source-object
distance z1 and the object-detector distance z12 are 23 m and 3.5 m, respectively.
The source size is 100 mm FWHM (42.5 mm standard deviation). The detector
pixel size is 0.5 mm. The source is monochromatic, with E = 17 keV. Figure (a)
represents the unconvoluted image, while figure (b) represents the image convo-
luted to take into account the source size. Image size: 800 × 800. Figures (c) and
(d) represent the intensity profile for the unconvoluted and for the convoluted im-
ages, respectively.

69

	Introduction
	Installation instructions
	Compiling from source
	Windows installer
	Linux
	Fedora, Centos and Scientific Linux
	Debian and Ubuntu

	Mac OS X

	User guide
	Getting started
	Using the program
	The main input file
	The spectrum file
	The source file
	The detector file
	The composition file
	The quadric array file
	The three-dimensional object geometry description file
	The sample file
	The output file

	Advanced usage
	Direction-dependent beam intensity and energy spectrum
	The anisotropicsource and the intensityscreen devices
	The beamsource and the beamscreen devices

	Simulation of a realistic imaging detector response
	Radionuclides sources
	Free-space propagation phase contrast imaging
	The XMI-MSIM plug-in
	Energy dispersive x-ray fluorescence detector response function
	Generic x-ray tube emission spectrum: Ebel model

	Description of the XRMC classes
	Vector and matrix operations
	The photon class
	The device and bodydevice classes
	The source class
	The spectrum class
	The phase class
	The composition class
	The quadric class
	The quadricarray class
	The qvolume class
	The geom3d class
	The path class
	The sample class
	The detectorarray class

	Examples
	Cylindrical shell
	Star shapes
	Different types of quadrics
	A wheel shape
	Objects with different compositions
	Anisotropicsource and intensityscreen
	Beamsource and beamscreen
	Free-propagation phase contrast imaging

	References and addtional resources
	Bibliography
	Useful links

