
PyORQ - Python Object Relational
binding with Queries

Release 0.1

Roeland Rengelink

June 15, 2004

rengelink@sourceforge.net

Copyright (c) 2004 Roeland Rengelink

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Abstract

This is the reference documentation for PyORQ (Python Object Relational binding with Queries). PyORQ
implements persistence for Python objects using a relational database (RDBMS) for storage.

PyORQ uses Python expressions to denote queries which can be automatically translated into SQL and then
be executed by the backend. This leverages the full search capabilities of RDBMSs in an object-oriented pro-
gramming environment. Contrary to other object-relational Python-SQL mappings, the user needs no knowledge
of SQL to search the database.

Contents

1 Introduction 2

2 Installation 3
2.1 Running the tests. 3

3 Using PyORQ 3
3.1 How to write persistent classes. 4
3.2 How to write queries. 6

4 pyorq — The base PyORQ package 7
4.1 pyorq.ptype — Persistent objects. 7
4.2 ptype.pprop — Persistent properties. 8
4.3 ptype.prel — Relations . 9

5 pyorq.interface — The database interfaces 11
5.1 pyorq.interface.db base — The interface definition. 11
5.2 pyorq.interface.postgresql db — for PostgreSQL. 11
5.3 pyorq.interface.mysql db — for MySQL . 11
5.4 pyorq.interface.sqlite db — for SQLite . 12

1 Introduction

PyORQ (Python Object Relational binding with Queries) implements persistence for Python objects using a rela-
tional database (RDBMS, e.g. PostgreSQL MySQL) for storage.

Object-relational mappings have been done before. They are relatively straightforward: classes map to tables,
attributes map to columns and instances map to rows. However, fundamental to the object paradigm is that
identity maps to state, and not the other way around. Hence, to search (i.e. map state to identity) one has to loop
over the collection of all objects and examine their state. If the objects are in a persistent store, the objects need to
be instantiated first which may be prohibitively expensive.

Traditionally there have been two solutions to this problem:

• Use persistent containers that use knowledge of the object’s state to allow efficient searches (e.g. B-Trees).
However, this essentially generalizes the notion of identity, and does not allow for arbitrary queries without
instantiation.

• Use knowledge of the object-relational mapping to write SQL queries that return object identities, which can
then be used to instantiate the results of the query. However, this means that the mechanism of the object-
relational mapping becomes part of the interface, and requires the user to use SQL within his application.

The innovative aspect of PyORQ is the use of Python expressions to denote queries which can be automatically
translated into SQL and then be executed by the backend. This leverages the full search capabilities of RDBMSs
in an object-oriented programming environment. Contrary to other object-relational Python-SQL mappings, the
user needs no knowledge of SQL to search the database.

v. 0.1 of PyORQ has the following features:

• A notation for describing persistent objects based on Python properties

• Automatic creation of tables based on the persistent object definition.

• A native Python notation to describe queries.

• Full support for object-oriented programming (encapsulation, inheritance)

– Persistent objects may refer to other persistent objects and queries understand this.

– References to objects of a particular type may also refer to subclasses of that type.

– Queries on a type, may return subclasses of that type.

• Interfaces to several SQL backends, including:

– PostgreSQL, using pyPgSQL by Billy G. Allie.

– MySQL, using MySQL-Python by Andy Dustman.

– SQLite, using PySQLite by Michael Owens and Gerhard Haring.

Some desirable features are still missing.

• PyORQ does not check if the definition of a previously created persistent object still matches the table
definition.
(Before modifying a persistent object, usedb.drop table() to remove the table).

2 1 Introduction

• No support for multiple inheritance (Don’t do it).

• Potential name-mangling problems are not checked.
(Assume that persistent attributes are case-insensitive, and you should be OK).

See Also:

pyPgSQL
(http://pypgsql.sourceforge.net/)

For the Python interface to PostgreSQL by Billy G. Allie.

MySQL-Python
(http://sourceforge.net/projects/mysql-python)

For the Python interface to MySQL by Andy Dustman.

PySQLite
(http://sourceforge.net/projects/pysqlite)

For the Python interface to SQLite by Michael Owens and Gerhard Haring.

2 Installation

To install PyORQ, unpack the tar file you downloaded, and runpython setup.py install . For example,
on Linux:

tar -xvzf PyORQ-0.1.tar.gz
cd PyORQ-0.1
python setup.py install

This assumes that you have write privileges in the site-packages directory of your Python distribution. If you don’t
have the necessary permissions, or if you just want to test PyORQ, you can also just add the directory that was
created when unpacking PyORQ to yourPYTHONPATHenvironment variable.

PyORQ assumes that you have access to one of the supported databases (PostgreSQL, MySQL or SQLite), and
that you have installed the corresponding Python interface (pyPgSQL, MySQL-Python, or PySQLite).

In the case of MySQL and PostgreSQL you will also need to know your username, password and the name of the
database, and, if the server is not located on your machine, the name of the host.

2.1 Running the tests

If you wish, you can run the unit tests supplied with the source distribution.

Make sure that PyORQ is installed, or that the installation directory is added to yourPYTHONPATHenvironment
variable. If you plan to use either the MySQL interface and/or the PostgreSQL interface, make sure that they
contain a database ’testdb’, and that your login-name is also your username for these databases.

Change directory to ’test’ and run

python query_test

This tests, for each available interface, whether the low-level library is available and whether you can connect to
the database. If successful, it will populate the database with some test data, and execute a number of queries.

3 Using PyORQ

PyORQ contains two packages,pyorq andpyorq.interface . Thepyorq package contains the following
modules:

3

• pyorq.ptype definespobject , the base class for all persistent objects, andptype the metaclass of
pobject .

• pyorq.pprop defines persistent properties.

• pyorq.prel implements the relational algebra.

You can safely import the objects that constitute the public interface of PyORQ (pobject and the persistent
property objects), using:

from pyorq import *

The pyorq.interface package contains the interfaces to the database backends. It contains a number of
modules:

• pyorq.interface.db base contains the base class which defines the public interface of the database
wrappers.

• pyorq.interface.nodb contains a database wrapper without persistent store (basically only a cache,
used for testing).

• pyorq.interface.sql db contains the base class for SQL databases.

• pyorq.interface.postgresql db contains the PostgreSQL interface.

• pyorq.interface.mysql db contains the MySQL interface.

• pyorq.interface.sqlite db contains the SQLite interface.

3.1 How to write persistent classes

A persistent class must:

1. derive frompobject , or another persistent class

2. have an attributedatabase , referring to an instance of one of the database interfaces

3. define one or more persistent attributes.

PyORQ supports the following persistent properties for built in python types:

Property Python type default
pint() int 0
pfloat() float 0.0
pstr() str ’’
pdate() datetime.date datetime.date(1,1,1)
ptime() datetime.time datetime.time()
pdatetime() datetime.datetime datetime.datetime(1,1,1)

You can provide alternative defaults to the constructor of the property objects. The main purpose of defaults is to
avoidNULLs in the database.

Note that the datetime properties currently don’t support time zones.

This is a valid persistent class:

4 3 Using PyORQ

from pyorq import *
from pyorq.interface import mysql_db

db = mysql_db.mysql_db(database=’testdb’)

class myclass(pobject)
database = db
a = pint() # default = 0
b = pfloat(7.3) # default = 7.3

You use a persistent class just like any other. You can instantiate an object and assign values to the persistent
properties. For example:

m = myclass()
m.a = 5
m.b = 22.4

You can store the instance to the database using itscommit method. When the instance is committed, it obtains
anobject identifier(oid).

print m.oid # prints None
m.commit()
print m.oid # print the object identifier

Object identifiers are used internally to relate Python instances with table rows. You can use the identifier to
retrieve an object from the database.

m_oid = m.oid
del m
new_m = myclass(oid=m_oid)
print new_m.a, new_m.b # prints ’5 22.4’

The database ensures that at any time there is only one object that corresponds to a given identifier. This means
that:

a = myclass(oid=m_oid)
b = myclass(oid=m_oid)
print a is b # prints True

Of course, the normal way to retrieve instances from the database is through queries (see below).

Persistent classes may contain attributes that refer to other persistent classes, using the propertypref(cls) . The
argument ofpref defines which class the persistent attribute refers to. Objects that are assigned to this attribute
must be instances of that class, or one of its subclasses.

This is a persistent class with a reference to the previously definedmyclass .

class newclass(pobject):
database = db
r = pref(myclass)

The default value for a persistent reference is None. You can also provide an instance of the referred class as a
default, or, provide a tuple(cls, oid) , that will create an instancecls(oid=oid) , when an attribute is first

3.1 How to write persistent classes 5

read.

For example:

class newclass(pobject):
database = db
r = pref(myclass, (myclass, None))

n = newclass()
print m.r

will print the representation of a new instance ofmyclass , created usingmyclass(oid=None) .

Persistent classes are subject to the following rules:

• All persistent classes in a schema must refer to the same database instance

• The names of persistent classes and persistent attributes are case-insensitive (The databases use lowercase
versions of the names for the table and column names).

• Derived classes cannot redefine persistent properties from the base class.

• PyORQ does not support multiple inheritance yet, although you can use mixins

• You can define constructors (init method), but constructors will not be called when objects are
retrieved from the database.

• You can define new , but the method will not be called, when retrieving objects from the database.

The requirement that all persistent classes must refer to the same database instance is best satisfied by using some
sort of singleton pattern. I prefer using modules for that. For example:

module mydb
from pyorq.interface.postgresql_db import postgresql_db
db = postgresql_db(database=’mydb’)

which can then be used in the different modules that define my database schema as:

from pyorq import *
from mydb import db

class Thing(pobject):
database = db
...

3.2 How to write queries

To retrieve objects from the database you write queries. The key idea behind our notation for queries is that
a class represents the set of all its instances, and thata class attribute that refers to a persistent property
says something about all the instances in this set. Hence, queries are expressions with persistent properties as
arguments that contain comparisons.

This is a valid query:

myclass.a == 5

This query returns an iterator. For each instancei , yielded by the iterator,isinstance(i, myclass) and
i.a==5 is True . If myclass has subclasses, then this query may also return instances of those subclasses. The
constraintisinstance(i, myclass) implies thati may be an instance of a subclass ofmyclass .

6 3 Using PyORQ

Queries understand references.

This query

newclass.r.a == 5

yields instancesi for which isinstance(i, newclass) and i.r.a==5 is True . Implicitly, this
means thatisinstance(i.r, myclass) is alsoTrue .

The query is equivalent to the generator:

def f()
for m in myclass.a == 5:

for n in newclass.r == m:
yield n

Note that comparison of persistent instances (as innewclass.r == m) implies comparison by identity (i.e.:
is).

Also note that if a class refers to a class with many subclasses, then the query will have to consider many possible
relations between referring object and referred objects.

Queries use the bitwise operators˜ , | , and& to represent the logical operatorsnot , or , andand respectively.
Note that bitwise operators have a higher precedence than comparison operators (contrary to logical operators).
Make sure that you properly parenthesize the terms in your queries!

The most important rule in queries is that they should have only one ’free variable’. This is an illegal query:

(A.a == 1) & (B.b == 2)

because it is not clear if this query should return instances of typeA or instances of typeB.

Queries also understand the arithmetic operators+, - , / , and* . This is a valid query:

(A.x + A.b.y + 17) <= (A.y * A.b.x * 2)

4 pyorq — The base PyORQ package

4.1 pyorq.ptype — Persistent objects

classptype (name, bases, attributes)
This is the metaclass for persistent classes.

The purpose ofptype is to register newly defined classes with the database and to delegate object instan-
tiation to the database.ptype derives from the build intype .

The constructor performs bookkeeping operations on persistent properties, and registers the class with the
database.

call (*args, **kwargs)
This method delegates object instantiation to the database

The following methods onptype behave as if they are class-methods onpobject (see below).

all sublasses ()
Recursively generate the class and all of its subclasses

make new instance (*args, **kwargs)
Create a new instance, passingargs andkwargs to the constructor

make old instance (oid)
Create a ’bare’ instance, bypassing the object constructor, for an object that will be retrieved from the

7

database

classpobject
This is be the base class for all persistent classes.

A persistent class should:

1.be a subclass ofpobject

2.define an attributedatabase , referring to a database interface

3.define one or more persistent attributes.

metaclass
The metaclass of all persistent classes isptype (q.v.).

commit ()
Commit the persistent object to the database
First, recursively, commit all objects that the object refers to, then commit the object itself.

4.2 ptype.pprop — Persistent properties

classpprop
The base class for all persistent properties

All persistent properties have the following attributes

name
The attribute name that refers to the property. This value is set upon initialization of the class by the
metaclass.

key
The key that is used to store the value of the property in the instancedict . This value is set
upon initialization of the class by the metaclass.

ptype
The type of the persistent property. Assignment of a valueval is type checked using
isinstance(val, ptype)

default
The default value of the persistent property. The property getter returns the default, if the values is not
found in the instance dict .

classpval (default=None)
The base class for persistent (atomic) values

get (instance, cls=None)
The getter.
If called asinstance.attr , return the value of the property. If called ascls.attr , return a
prel.value attr object.

The following classed derive frompval :

Property ptype default
pint int 0
pfloat float 0.0
pstr str ’’
pdate datetime.date datetime.date(1,1,1)
ptime datetime.time datetime.time()
pdatetime datetime.datetime datetime.datetime(1,1,1)

classpref (cls, default=None)
A reference to another persistent classcls .

get (instance, cls=None)
The getter.
If called asinstance.attr , return the value of the property. If the value is a tuple(cls, oid)
then it first instantiates the object usingcls(oid=oid) .
If called ascls.attr , return aprel.ref attr object.

8 4 pyorq — The base PyORQ package

4.3 ptype.prel — Relations

This module implements the relational algebra for PyORQ.

Ths module is used internally by PyORQ, You don’t need this information to work with queries

A more or less formal definition is given by the following grammar:

relation := rel_not | rel_and | rel_or | comparions
rel_not := ’˜’ relation
rel_and := relation ’&’ relation
rel_or := relation ’|’ relation
comparison := expr cmp_op expr
cmp_op := ’==’ | ’!=’ | ’<’ | ’<=’ | ’>’ | ’>>’
expression := min_expr | bin_expr | term
min_expr := ’-’ expr
bin_expr := expr bin_op expr
bin_op := ’+’ | ’-’ | ’*’ | ’/’
term := value_attr | ref_attr | int | long | float | str ...

All classes in this module define the following methods:

py repr ()
Build a representation that can be evaluated by python. Used by the nodb() interface to build a list compre-
hension. that should produce the same result as an SQL query

sql repr (db)
Build a representation that can be used in a WHERE clause. The db-argument is used to call back into the
database interface to build representations for builtin values

free variable ()
Returns the free variable of the relation or the expression

updated bound variables (d)
Used to find the join clauses necessary to build the cross reference between tables. A query of the form
A.b.c.d == 3 , produces a bound-variable dict{(’ x’, ’b’): A.b.ptype, (’ x’, ’b’,
’c’): A.b.ptype.c.ptype} This dictionary is used to produce aliases and join clauses.

The module defines the following classes

classexpression ()
Expression object define arithmetic operations that return new expression object. Expression object define
comparison operators that return relation objects.

classrelation ()
Relation objects define logical operators (using the bitwise operators) that return new relation objects.

iter ()
Yield all instances that satisfy the relation.

The iterator loops over all subclasses of the free variable of the relation. The database evaluates the
relation for each subclass

The following classes are derived fromexpression .

classvalue attr (parent, prop)
A reference to a persistent value.

This object is returned by the getter of propertyprop if the attribute is accessed as a class attribute. In this
caseparent refers to the class. The object may also be returned byref attr. getattr (attr)
if attr is as persistent value of the referred property. In this case the parent will be theref attr object.

classref attr (parent, prop)
A reference to a persistent class.

This object is returned by the getter of propertyprop if the attribute is accessed as a class attribute. In this
caseparent refers to the class. The object may also be returned byref attr. getattr (attr)

4.3 ptype.prel — Relations 9

if attr is as persistent reference of the referred property. In this case the parent will be theref attr
object.

getattr (attr)
Used to build chains of references to references.

If attr is a persistent value of the persistent class thatref attr refers to, return a newvalue attr
object. If it is a persistent ref, return aref attr object. Otherwise, raise anAttributeError .

Comparisons ofref attr objects with instances implies identity comparison.

eq (other)
Returns acomp is object.

ne (other)
Returns acomp not is object.

classterm (value)
An expression object, containing avalue of one of the built in Python types.

classexpr min (arg)
Produced by-arg

classexpr add (lhs, rhs)
Produced bylhs + rhs

classexpr sub (lhs, rhs)
Produced bylhs - rhs

classexpr mul (lhs, rhs)
Produced bylhs * rhs

classexpr div (lhs, rhs)
Produced bylhs / rhs

The following classed are derived fromrelation .

classcomp eq(lhs, rhs)
Produced bylhs == rhs

classcomp ne(lhs, rhs)
Produced bylhs != rhs

classcomp ge(lhs, rhs)
Produced bylhs >= rhs

classcomp gt (lhs, rhs)
Produced bylhs > rhs

classcomp le (lhs, rhs)
Produced bylhs <= rhs

classcomp lt (lhs, rhs)
Produced bylhs < rhs

classcomp is (lhs, rhs)
Produced bylhs == rhs if lhs or rhs is aref attr

classcomp not is (lhs, rhs)
Produced bylhs != rhs if lhs or rhs is aref attr

classrel and (lhs, rhs)
Produced bylhs &rhs

classrel or (lhs, rhs)
Produced bylhs | rhs

classrel not (arg)
Produced bỹarg

10 4 pyorq — The base PyORQ package

5 pyorq.interface — The database interfaces

5.1 pyorq.interface.db base — The interface definition

This module defines the abstract base class for all database interfaces.

Ths module is used internally by PyORQ, You don’t need this information to use the databases

classdb base
The following methods constitute the external interface of the database interfaces

register class (cls)
Register classcls with the database.

This method is called byptype. init . If the class was not previously registered, a table will
be created.

get instance (cls, *args, **kwargs)
Invoked when creating an object

If ’oid’ is in thekwargs dict, return a known instance, else create a new instance.

commit (instance)
Commit an instance to the database.

If the instance is known, update the contents of the database, else insert the instance in the database.

query generator (cls, query)
Yield all instances from

In addition, the following methods are available for simple database operations.

drop table (class name)
Remove the table for the class with nameclass name.

PyORQ does not support schema evolution yet. You can use this method to remove the old table before
modifying a persistent class definition

CAUTION. This may leave the database in an inconsistent state with dangling references.

empty table (class name)
Remove the contents of the table for the class with nameclass name.

CAUTION. This may leave the database in an inconsistent state with dangling references.

5.2 pyorq.interface.postgresql db — for PostgreSQL

This module importslibpq from pyPgSQL

classpostgresql db(dsn=None, user=None, password=None, host=None, database=None, port=None, op-
tions=None, tty=None, clientencoding=None, unicoderesults=None)

Create an interface to a PostgreSQL database.

All parameters are used to create the argument for the functionlibpq.PQconnectdb , which creates a
connection.

dsn is a string of the form’host:port:database:user:passwd:options:tty’ , that can be
used as an alternative to the named arguments.

See Also:

pyPgSQL
(http://pypgsql.sourceforge.net/)

For the Python interface to PostgreSQL by Billy G. Allie.

5.3 pyorq.interface.mysql db — for MySQL

This module imports mysql , the low-level interface to MySQL, that is part of MySQL-Python.

11

classmysql db(host=None, user=None, passwd=None, db=None, port=None)
Create an interface to a MySQL database.

All parameters are used to create the argument for the functionmysql.connect , which creates a con-
nection.

See Also:

MySQL-Python
(http://sourceforge.net/projects/mysql-python)

For the Python interface to MySQL by Andy Dustman.

5.4 pyorq.interface.sqlite db — for SQLite

This module imports sqlite , the low-level interface to SQLite, that is provided by PySQLite.

classsqlite db(database, mode=0755)
Create an interface to an SQLite database.

database (the filename of the database) andmode (the permissions for the file that constitutes the
database) are passed tosqlite.connect

See Also:

PySQLite
(http://sourceforge.net/projects/pysqlite)

For the Python interface to SQLite by Michael Owens and Gerhard Haring.

12 5 pyorq.interface — The database interfaces

	1 Introduction
	2 Installation
	2.1 Running the tests

	3 Using PyORQ
	3.1 How to write persistent classes
	3.2 How to write queries

	4 pyorq --- The base PyORQ package
	4.1 pyorq.ptype --- Persistent objects
	4.2 ptype.pprop --- Persistent properties
	4.3 ptype.prel --- Relations

	5 pyorq.interface --- The database interfaces
	5.1 pyorq.interface.dbprotect unhbox voidb@x kern .06emvbox {hrule width.55em}base --- The interface definition
	5.2 pyorq.interface.postgresqlprotect unhbox voidb@x kern .06emvbox {hrule width.55em}db --- for PostgreSQL
	5.3 pyorq.interface.mysqlprotect unhbox voidb@x kern .06emvbox {hrule width.55em}db --- for MySQL
	5.4 pyorq.interface.sqliteprotect unhbox voidb@x kern .06emvbox {hrule width.55em}db --- for SQLite

