The Logtalk Handbook
Release v3.21.0

Paulo Moura

Oct 30, 2018

1 User Manual

1.1

1.2

1.3

1.4

1.5

CONTENTS:

1
Mainfeatures e e e 1
1.1.1 Integration of logic and object-oriented programming 1
1.1.2 Integration of event-driven and object-oriented programming 1
1.1.3 Support for component-based programmingo e e e 2
1.1.4 Support for both prototype and class-based systems 2
1.1.5 Support for multiple object hierarchies 0oL, 2
1.1.6 Separation between interface and implementation 2
1.1.7 Private, protected and public inheritance oL 2
1.1.8 Private, protected and public object predicates 3
1.1.9 Parametric 0bJeCts o v i e e e e e e e e e e e e e e 3
1.1.10 High level multi-threading programming support o v v v v v v v 3
1.1.11 Smooth learning curve e 3
1.1.12 Compatibility with most Prolog systems and the ISO standard 3
1.LI.L13 Performance e e e e 3
11,14 Logtalk SCOPe . . . o v o vt e 4
Nomenclature e e 4
1.2.1 C4++nomenclature oL e e 4
1.2.2 Javanomenclature L e e e e e e e 5
MESSAZES .« « « ¢ e e e e e e e e e e e e e e e e 6
1.3.1 Operators used inmessage sending oL e 6
1.3.2 Sending amessage to an 0bject et e e e e e e e e e 7
1.3.3 Delegating a message toanobject oL 7
1.3.4 Sending amessage to self e 7
1.3.5 Broadcasting e e e 7
1.3.6 Calling imported and inherited predicates, 8
1.3.7 Message sending and event Zenerationt e e e e e e e e e e e 8
ODbJECES . . v o o e e e e e e e e e e e 9
1.4.1 Objects, prototypes, classes, and instances 9
1.42 Defininganewobject L e 10
1.4.3 Parametric 0bjJectso e e e e 12
1.4.4 Finding defined objects L e e e e e e 13
1.4.5 Creatinganew object inTuntime v v v v v vt e e e e e e e e e 13
1.4.6 Abolishing an existingobject L e 14
1.477 Object dir€Ctives v v v v i e e e e e e e e e e e e e e e e e e 14
1.4.8 Objectrelationships o e 16
1.49 ODbJeCt Properties v v v v v e e e e e e e e e e e e e e e e e e 17
1.4.10 Built-in objects o o e e e e e e e e e e e 18
Protocols 20
1.5.1 Defininganew protocol L e 20

1.6

1.7

1.8

1.9

1.10

1.5.2 Finding defined protocols e 21

1.5.3 Creating anew protocol inTuntime o v v v it e e e e e e 21
1.5.4 Abolishing an existing protocolo e 21
1.5.5 Protocoldirectives L e 22
1.5.6 Protocol relationships L 22
1.5.7 Protocol properties o e e e e e e 23
1.5.8 Implementing protocols L e e e e e e e 23
1.5.9 Built-in protocols e e e e e e e e e 24
CategoTiCS .« . v v v v e 24
1.6.1 Defining anew category v v ittt e e e e e e e e e e e 25
1.6.2 Finding defined categories 27
1.6.3 Creating anew category in Tuntime v v v v v v v v vt e e e e 27
1.6.4 Abolishing an exiSting Category v v v v v v e e e e e e e e e e e e e e e 28
1.6.5 Category direCtives L e e e e e e e 28
1.6.6 Category relationships L e 29
1.6.7 Category Properties v v v vt i i e e e e e e e e e e e e e e e e 29
1.6.8 Importing categoriest i it e e e e e e e e e e e 31
1.6.9 Calling category predicates v v v v i i e e e e e e e e e e e e e e 31
1.6.10 Parametric cate@Ories v v v v i i e e e e e e e e e e e e e e e e e e 32
Predicates e 33
1.7.1 Reserved predicate nameso e e e e e e e e e e 33
1.7.2 Declaring predicates i e e e 33
1.7.3 Defining predicates o i i i e e e e e e e e e e e e e e e 40
1.7.4 Built-in object predicates (methods) e 46
1.7.5 Predicate propertiest e e e e e e e e 52
1.7.6 Finding declared predicates L oo 53
1.7.7 Calling Prolog built-in predicates e 53
1.7.8 Calling Prolog user-defined predicates 54
Inheritance e 55
1.8.1 Protocolinheritance L. e 55
1.8.2 Implementation inheritance Lo Lo 56
1.8.3 Public, protected, and private inheritance 59
1.8.4 Composition versus multiple inheritance oo, 60
Event-driven programming ot i e 60
191 Definitions L 60
1.9.2 Eventgenerationt ittt e e e e e e e e e e e 61
1.9.3 Communicating events t0 MONItOTS v v v v v v v v e e e e e e e e 62
1.9.4 Performance CONCErns o v v v v v v it ittt e e e e e 62
1.9.5 Monitor semantics L e e e e e e e e 62
1.9.6 Activation order of monitors L Lo 62
1.9.7 Eventhandling e 62
Multi-threading programming L. 64
1.10.1 Enabling multi-threading support 65
1.10.2 Enabling objects to make multi-threading calls 65
1.10.3 Multi-threading built-in predicates e e 65
1.10.4 One-way asynchronouscalls 67
1.10.5 Asynchronous calls and synchronized predicates 67
1.10.6 Synchronizing threads through notifications 69
1.10.7 Threaded engines e e e e 69
1.10.8 Multi-threading performance it e e e e e e e 70
Errorhandling L e e e 71
1.11.1 Compiler warnings and €rTors oL e 71
1.11.2 Runtime eIrors o v vttt e e e e e e e e e e e e 73
Documenting applicationso e e e 74

1.12.1 Documenting directives L e e e e e 74

1.12.2 Processing and viewing documenting files 76
1.12.3 Inline formatting in comments text oo 76

1.13 Performance e e 77
1.13.1 Local predicatecalls e 77
1.13.2 Calls to imported or inherited predicates oo, 77

1.13.3 Callstomodule predicates i i i e e e e 77
L1340 MESSAZES « . v v v vt e 77

1.13.5 Inlining o o o e e e e e e e e e e e 78
1.13.6 Generated code simplification and optimizations 78
1.13.7 Other considerationsottt i e e e e 78

[.14 Installing Logtalk o o o e e e 78
1.14.1 Hardware and software requUIrements« v v v vt et e e e e e 78
1.14.2 Logtalkinstallers e e e 79

1.14.3 Source distribution e e e e e e e 79
1.14.4 Directories and files organization oo o 79

1.15 Writing, running, and debugging applications L oo 83
1.15.1 Writing applications o v v v i e e e e e e e e e e e e e e e e 83
1.15.2 Compiling and running applications e 85
1.15.3 Debugging applications L e e 93

1.16 Prolog integration and migration guide Lo 101
1.16.1 Source files with both Prolog code and Logtalkcode 101
1.16.2 Encapsulating plain Prolog codeinobjects 101

1.16.3 Converting Prolog modules into objects e 102
1.16.4 Compiling Prolog modules asobjects 103
1.16.5 Dealing with proprietary Prolog directives and predicates 104
1.16.6 Calling Prolog module predicates e 105
1.16.7 Compiling Prolog module multifile predicates 106

2 Reference Manual 109
2.1 Grammar e e e e e e e e e e e e 109
2.1.1 0 Entitieso e e e e e e e e 109

2.1.2 Objectdefinition i i e e e e e e e e e e 109

2.1.3 Category definition 110

2.1.4 Protocol definition e e e e e 110

2.1.5 Entityrelations e e e 111

2.1.6 Entityidentifiers L. e e e 115

2.1.7 Sourcefilenames e e e e 116

2.1.8 Termso e e e e 117

2.1.9 DIrectives o i i e e e e e e e e e e e e e e e 118
2.1.10 Clausesand goals e e e 126
2.1.11 Lambda eXpressions v ov vttt e e e e e e e e e e e e e 127
2.1.12 Entity Properties v v v v v e 128
2.1.13 Predicate properties o i i e e e e e e e e e e e e e e e e e e 131
2.1.14 Compiler flags L e 132

2.2 Control CONSIIUCES v v o it et e 132
22.1 Message sending i . e e e e e e e e e e e 132

222 Message delegation e e e e e e e e e e e e e 134

2.2.3 Calling imported and inherited predicates 135

224 Callingexternal predicates L. L 137

225 Contextswitchingcalls L 138

23 DITECHIVES .« o o o v v i e e e e e e e e e e e 139
23.1 Sourcefiledirectives e 139

2.3.2 Conditional compilation directives L e e e 143

233 Entity direCtives o o e e e e e e e e e e e e e e e e e e e 145

234 Predicate direCtives Lo e e e 155

24 Built-inpredicateso e e e e 168
2.4.1 Enumerating objects, categories and protocols oL 168

2.4.2 Enumerating objects, categories and protocols properties 169

2.4.3 Creating new objects, categories and protocols 172

2.4.4 Abolishing objects, categories and protocols L oo 176

2.4.5 Objects, categories, and protocols relations L oo 178

24.6 Eventhandling e 185

247 Multi-threading e 188

2.4.8 Multi-threading engineso i e e 195

249 Compiling and loading source files e 201
2410 Flags 212

2.5 Built-inmethods e 214
2.5.1 EXecution CONtEXL v v v v v v vt et e e e e e e e e e e e e e e e e e e e 214

252 Reflection e e 218

253 Database e 221

254 Meta-callso 228

255 Errorhandling oL e e e e e e 231

25.6 AllSOIUtONS o o o e e e 240

257 Eventhandling e 244

2.5.8 Message forwarding L. Lo e e e 246

2.5.9 Definite clause grammarrules Lo e e e e e e e 247
2.5.10 Term and goal expansionot e e e e e e e e e e 250
2.5.11 Coinduction hooks e 254
25.12 Message printing L. e e e e e e 254
2.5.13 Questionasking e 258

3 Tutorial 263
3.1 Listpredicates L e e 263
3.1.1 Defining alistobject 263

3.1.2 Defining a list protocol e e e e e e e e e e e 264

3.1.3 0 Summary ... L e e e e e e e e 265

3.2 Dynamic object attributes e 265
32.1 Definingacategory e e e e 266

3.2.2 Importing the category i it e e e e e e e 267

323 Summary e e e e e e e e e e e e e e e e e e e 267

3.3 Avreflective class-based system L. e e e e e e e e e 268
3.3.1 Defining the base classes e 268

332 Summary ... e e e e 269

3.4 Profiling programs Lo e e e e e e e 269
341 Messages @S VENLS . . o . ot e it e e e e e e e e e e e e e e e e e e 269

342 Profilersasmonitors Lo 269

343 Summary e e e e e e e e e e e e e e e e 271

4 FAQ 273
4.1 General e 273
4.1.1 Why are all versions of Logtalk numbered 2.x or3.x? 273

4.1.2 Why do I need a Prolog compiler to use Logtalk? 273

4.1.3 Is the Logtalk implementation based on Prolog modules? 273

4.1.4 Does the Logtalk implementation use term-expansion? 273

42 Compatibility o e e e e e e e e e e e e 274
4.2.1 What are the backend Prolog compiler requirements to run Logtalk? 274

4.2.2 Can I use constraint-based packages with Logtalk? 274

4.2.3 Can I use Logtalk objects and Prolog modules at the same time? 274

43 Installation e 274
4.3.1 The integration scripts/shortcuts are not working! L. 274
4.3.2 I geterrors when starting up Logtalk after upgrading to the latest version! 274
44 Portability e e e e e 275
4.4.1 Are my Logtalk applications portable across Prolog compilers? 275
4.4.2 Are my Logtalk applications portable across operating systems? 275
45 Programming e 275
4.5.1 Should I use prototypes or classes in my application? 275
4.5.2 Can I use both classes and prototypes in the same application? 275
4.5.3 Can I mix classes and prototypes in the same hierarchy? 276
4.5.4 Can I use a protocol or a category with both prototypes and classes? 276
4.5.5 What support is provided in Logtalk for defining and using components? 276
4.5.6 What support is provided in Logtalk for reflective programming? 276
4.6 Troubleshooting e 276
4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do not work! 276

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing
XML documenting files! L e e e 276

4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler reports a suc-
cessful compilation with zero errors and zero warnings! 000 277
47 Usability oo e e e e e e 277
4.7.1 Is there a shortcut for compiling and loading source files? 277
4.7.2 Isthere an equivalent directive to the ensure_loaded/1 Prolog directive? 277
4.7.3 Are there shortcuts for the make functionality? 277
4.8 Deployment e e e e e e e e e e e 277
4.8.1 Can /I create standalone applications with Logtalk? 277
4.9 Performance e e e e 278
4.9.1 Is Logtalk implemented as a meta-interpreter? 278
4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code? Static code? 278

4.9.3 How about message-sending performance? Does Logtalk use static binding or dynamic bind-
ING? . e e 278
4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance? 278
4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog modules? 279
410 LICenSINg . . . v v v v v e 279
4.10.1 What’s the Logtalk distribution license? 279
4.10.2 Can Logtalk be used in commercial applications? 279
4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler? 279
411 Support . . .o e e e e e 279
4.11.1 Are there professional consulting, training and supporting services? 279
5 Glossary 281
Bibliography 287
Index 291

vi

CHAPTER
ONE

USER MANUAL

1.1 Main features

Several years ago, I decided that the best way to learn object-oriented programming was to build my own object-
oriented language. Prolog being always my favorite language, I chose to extend it with object-oriented capabilities.
Strong motivation also come from my frustration with Prolog shortcomings for writing large applications. Eventually
this work has led to the Logtalk programming language as its know today. The first system to use the name Logtalk
appeared in February 1995. At that time, Logtalk was mainly an experiment in computational reflection with a rudi-
mentary runtime and no compiler. Based on feedback by users and on the author subsequent work, the name was
retained and Logtalk as created as a full programming language focusing on using object-oriented concepts for code
encapsulation and reuse. Its first public alpha version was released in July 1998 with the first stable release (2.0)
following in February 1999. Development of the third generation of Logtalk started in 2012 with the first public alpha
version in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

1.1.1 Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On one hand,
the object orientation allows us to work with the same set of entities in the successive phases of application
development, giving us a way of organizing and encapsulating the knowledge of each entity within a
given domain. On the other hand, logic programming allows us to represent, in a declarative way, the
knowledge we have of each entity. Together, these two advantages allow us to minimize the distance
between an application and its problem domain, turning the writing and maintenance of programming
easier and more productive.

In a more pragmatically view, Logtalk objects provide Prolog with the possibility of defining several
namespaces, instead of the traditional Prolog single database, addressing some of the needs of large
software projects.

1.1.2 Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which takes place
at each moment is a result of the observation of occurring events. This integration complements object-
oriented programming, in which each computing is initiated by the explicit sending of a message to an
object. The user dynamically defines what events are to be observed and establishes monitors for these
events. This is specially useful when representing relationships between objects that imply constraints
in the state of participating objects [Rumbaugh87], [Rumbaugh88], [Fornarino_et_al_89], [Razek92].

Other common uses are reflective applications like code debugging or profiling [Maes87]. Predicates can
be implicitly called when a spied event occurs, allowing programming solutions which minimize object

The Logtalk Handbook, Release v3.21.0

coupling. In addition, events provide support for behavioral reflection and can be used to implement the
concepts of pointcut and advice found on Aspect-Oriented Programming.

1.1.3 Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without any code
duplication and irrespective of object hierarchies. A category is a first-class encapsulation entity, at the
same level as objects and protocols, which can be used as a component when building new objects. Thus,
objects may be defined through composition of categories, which act as fine-grained units of code reuse.
Categories may also extend existing objects. Categories can be used to implement mixins and aspects.
Categories allows for code reuse between non-related objects, independent of hierarchy relations, in the
same vein as protocols allow for interface reuse.

1.1.4 Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or prototype-
based [Lieberman86], with a strong predominance of class-based languages. Logtalk provides support for
both hierarchy types. That is, we can have both prototype and class hierarchies in the same application.
Prototypes solve a problem of class-based systems where we sometimes have to define a class that will
have only one instance in order to reuse a piece of code. Classes solves a dual problem in prototype
based systems where it is not possible to encapsulate some code to be reused by other objects but not by
the encapsulating object. Stand-alone objects, that is, objects that do not belong to any hierarchy, are a
convenient solution to encapsulate code that will be reused by several unrelated objects.

1.1.5 Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java [Joy_et_al_00] define a single
hierarchy rooted in a class usually named Object. This makes it easy to ensure that all objects share
a common behavior but also tends to result in lengthy hierarchies where it is difficult to express objects
which represent exceptions to default behavior. In Logtalk we can have multiple, independent, object
hierarchies. Some of them can be prototype-based while others can be class-based. Furthermore, stand-
alone objects provide a simple way to encapsulate utility predicates that do not need or fit in an object
hierarchy.

1.1.6 Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming language.
Logtalk provides support for separating interface from implementation in a flexible way: predicate di-
rectives can be contained in an object, a category or a protocol (first-order entities in Logtalk) or can be
spread in both objects, categories and protocols.

1.1.7 Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++ [Stroustrup86], en-
abling us to restrict the scope of inherited, imported or implemented predicates (by default inheritance is
public).

2 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

1.1.8 Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in a way
similar to C++ [Stroustrup86]. Private predicates can only be called from the container object. Protected
predicates can be called by the container object or by the container descendants. Public predicates can be
called from any object.

1.1.9 Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize object predi-
cates. Parametric objects are implemented in a similar way to L&O [McCabe92], OL (P) [Fromherz93]
or SICStus Objects [SICStus95] (however, access to parameter values is done via a built-in method
instead of making the parameters scope global over the whole object). Parametric objects allows us to
treat any predicate clause as defining an instantiation of a parametric object. Thus, a parametric object
allows us to encapsulate and associate any number of predicates with a compound term.

1.1.10 High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected backend Prolog
compilers, allowing objects to support both synchronous and asynchronous messages. Logtalk allows
programmers to take advantage of modern multi-processor and multi-core computers without bothering
with the details of creating and destroying threads, implement thread communication, or synchronizing
threads.

1.1.11 Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an incremental
learning and use of most of its features.

1.1.12 Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in particular,
with the ISO Prolog standard [ISO95]. It runs in almost any computer system with a modern Prolog
compiler.

1.1.13 Performance

The current Logtalk implementation works as a trans-compiler: Logtalk source files are first compiled
to Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore, Logtalk per-
formance necessarily depends on the backend Prolog compiler. The Logtalk compiler preserves the pro-
grammers choices when writing efficient code that takes advantage of tail recursion and first-argument
indexing.

As an object-oriented language, Logtalk can use both static binding and dynamic binding for matching
messages and methods. Furthermore, Logtalk entities (objects, protocols, and categories) are indepen-
dently compiled, allowing for a very flexible programming development. Entities can be edited, compiled,
and loaded at runtime, without necessarily implying recompilation of all related entities.

When dynamic binding is used, the Logtalk runtime engine implements caching of method lookups (in-
cluding messages to self and super calls), ensuring a performance level close to what could be achieved
when using static binding.

1.1. Main features 3

The Logtalk Handbook, Release v3.21.0

1.1.14 Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also extends them with
those areas where object-oriented features provide an advantage compared to plain Prolog. Among these areas we
have:

Logic and object-oriented programming teaching and researching Logtalk smooth learning curve, combined
with support for both prototype and class-based programming, protocols, components or aspects via category-
based composition, and other advanced object-oriented features allow a smooth introduction to object-oriented
programming to people with a background in Prolog programming. The distribution of Logtalk source code
using an open-source license provides a framework for people to learn and then modify to try out new ideas
on object-oriented programming research. In addition, the Logtalk distribution includes plenty of programming
examples that can be used in the classroom for teaching logic and object-oriented programming concepts.

Structured knowledge representations and knowledge-based systems Logtalk objects, coupled with event-driven
programming features, enable easy implementation of frame-like systems and similar structured knowledge
representations.

Blackboard systems, agent-based systems, and systems with complex object relationships Logtalk support for
event-driven programming can provide a basis for the dynamic and reactive nature of blackboard type appli-
cations.

Highly portable applications Logtalk is compatible with most modern Prolog systems that support official and de
facto standards. Used as a way to provide Prolog with namespaces, it avoids the porting problems of most
Prolog module systems. Platform, operating system, or compiler specific code can be isolated from the rest of
the code by encapsulating it in objects with well-defined interfaces.

Alternative to a Prolog module system Logtalk can be used as an alternative to a Prolog compiler module system.
Most Prolog applications that use modules can be converted into Logtalk applications, improving portability
across Prolog systems and taking advantage of the stronger encapsulation and reuse framework provided by
Logtalk object-oriented features.

Integration with other programming languages Logtalk support for most key object-oriented features helps users
integrating Prolog with object-oriented languages like C++, Java, or Smalltalk by facilitating a high-level map-
ping between the two languages.

1.2 Nomenclature

Depending on your Object-oriented Programming background (or lack of it), you may find Logtalk nomenclature
either familiar or at odds with the terms used in other languages. In addition, being a superset of Prolog, terms such
as predicate and method are often used interchangeably. Logtalk inherits most of its nomenclature from Smalltalk,
arguably (and somehow sadly) not the most popular OOP language nowadays. In this section, we map nomenclatures
from popular OOP languages such as C++ and Java to the Logtalk nomenclature.

1.2.1 C++ nomenclature
There are several C++ glossaries available on the Internet. The list that follows relates the most commonly used C++
terms with their Logtalk equivalents.

abstract class Logtalk uses an operational definition of abstract class: any class that does not inherit a method for
creating new instances can be considered an abstract class. Moreover, Logtalk supports interfaces/protocols,
which are often a better way to provide the functionality of C++ abstract classes.

base class Logtalk uses the term superclass with the same meaning.

data member Logtalk uses predicates for representing both behavior and data.

4 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

constructor function There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides
a built-in predicate, create_object/4, which can be used as a building block to define more sophisticated object
creation predicates.

derived class Logtalk uses the term subclass with the same meaning.

destructor function There are no special methods for deleting new objects in Logtalk. Instead, Logtalk provides a
built-in predicate, abolish_object/1, which is often used to define more sophisticated object deletion predicates.

friend function Not supported in Logtalk. Nevertheless, see the manual section on meta-predicates.

instance In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source file in
the same way as classes.

member Logtalk uses the term predicate.
member function Logtalk uses predicates for representing both behavior and data.

namespace Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the same
namespace (Logtalk entities are objects, categories, and protocols).

nested class Logtalk does not support nested classes.

template Logtalk supports parametric objects, which allows you to get the similar functionality of templates at run-
time.

this Logtalk uses the built-in context method self/] for retrieving the current instance. Logtalk also provides a his/]
method but for returning the class containing the method being executed. Why the name clashes? Well, the
notion of self was inherited from Smalltalk, which predates C++.

virtual member function There is no virtual keyword in Logtalk. Any inherited or imported predicate can be
redefined (either overridden or specialized). Logtalk can use static binding or dynamic binding for locating both
method declarations and method definitions. Moreover, methods that are declared but not defined simply fail
when called (as per closed-world assumption).

1.2.2 Java nomenclature
There are several Java glossaries available on the Internet. The list that follows relates the most commonly used Java
terms with their Logtalk equivalents.

abstract class Logtalk uses an operational definition of abstract class: any class that does not inherit a method for
creating new instances is an abstract class. L.e. there is no abstract keyword in Logtalk.

abstract method In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its
definition to some descendant subclass.

assertion There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation hooks
and developer tools.

extends There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations.
Moreover, the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface Logtalk uses the term protocol with the same meaning.
callback method Logtalk supports event-driven programming, the most common usage context of callback methods.

class method Class methods may be implemented in Logtalk by using a metaclass for the class and defining the class
methods in the metaclass. I.e. class methods are simply instance methods of the class metaclass.

class variable True class variables may be implemented in Logtalk by using a metaclass for the class and defining
the class variables in the class. L.e. class variables are simply instance variables of the class metaclass. Shared
instance variables may be implemented by using the built-in database methods (which can be used to implement

1.2. Nomenclature 5

The Logtalk Handbook, Release v3.21.0

variable assignment) to access and updated a single occurrence of the variable stored in the class (there is no
static keyword in Logtalk).

constructor There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, create_object/4, which is often used to define more sophisticated object creation predicates.

final There is no final keyword in Logtalk; methods may always be redefined in subclasses (and instances!).
inner class Inner classes are not supported in Logtalk.

instance In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source file in
the same way as classes.

method Logtalk uses the term predicate interchangeably with the term method.
method call Logtalk usually uses the expression message sending for method calls, true to its Smalltalk heritage.

method signature Logtalk selects the method/predicate to execute in order to answer a method call based only on
the method name and number of arguments. Logtalk (and Prolog) are not typed languages in the same sense as
Java.

package There is no concept of packages in Logtalk. All Logtalk entities (objects, protocols, categories) share a
single namespace. But Logtalk does support a concept of /ibrary that allows grouping of entities whose source
files share a common prefix.

reflection Logtalk features a white box API supporting structural reflection about entity contents, a black box API
supporting behavioral reflection about object protocols, and an events API for reasoning about messages ex-
changed at runtime.

static There is no static keyword in Logtalk. See the entries on class methods and class variables.

super Instead of a super keyword, Logtalk provides a super operator and control construct, /I, for calling over-
ridden methods.

synchronized Logtalk supports multi-threading programming in selected Prolog compilers, including a synchro-
nized/l predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-
predicate or per-predicate-set mutexes.

this Logtalk uses the built-in context method self/] for retrieving the current instance. Logtalk also provides a rhis/]
method but for returning the class containing the predicate clause being executed. Why the name clashes? Well,
the notion of self was inherited from Smalltalk, which predates Java.

1.3 Messages

Messages allows us to call object predicates. Logtalk uses the same nomenclature found in other object-oriented
programming languages such as Smalltalk. Therefore, the terms predicate and method are often used interchangeably
when referring to predicates defined inside objects and categories. A message must always match a predicate within
the scope of the sender object.

Note that message sending is only the same as calling an object’s predicate if the object does not inherit (or import)
predicate definitions from other objects (or categories). Otherwise, the predicate definition that will be executed may
depend on the relationships of the object with other Logtalk entities.

1.3.1 Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

6 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

:— op (600, xfy, ::).
:— op (600, fy,).
:— op (600, fy, ~7).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded) until the end
of the Prolog session (this is the usual behavior of most Prolog compilers). Note that these operator definitions are
compatible with the predefined operators in the Prolog ISO standard.

1.3.2 Sending a message to an object

Sending a message to an object is accomplished by using the ::/2 control construct:

., Object::Message,

The message must match a public predicate declared for the receiving object. The message may also correspond to a
protected or private predicate if the sender matches the predicate scope container. If the predicate is declared but not
defined, the message simply fails (as per the closed-world assumption).

1.3.3 Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender by using the []/I delegation
control construct:

., [Object::Message],

This control construct can only be used within objects and categories (at the interpreter top-level, the sender is always
the pseudo-object user so using this control construct would be equivalent to use the : : /2 message sending control
construct).

1.3.4 Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has received the
original message. This is done in Logtalk through the ::// control construct:

., ::Message,

The message must match either a public or protected predicate declared for the receiving object or a private predicate
within the scope of the sender otherwise an error will be thrown (see the Reference Manual for details). If the
message is sent from inside a category or if we are using private inheritance, then the message may also match a
private predicate. Again, if the predicate is declared but not defined, the message simply fails (as per the closed-world
assumption).

1.3.5 Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This can be
achieved by using the message sending method described above. However, for convenience, Logtalk implements an
extended syntax for message sending that may improve program readability in some cases. This extended syntax uses
the (,) /2, (;)/2,and (—>) /2 control constructs. For example, if we wish to send several messages to the same
object, we can write:

1.3. Messages 7

The Logtalk Handbook, Release v3.21.0

’ | ?— Object:: (Messagel, Message2, ...).

This is semantically equivalent to:

’ | ?— Object::Messagel, Object::Message?2,

This extended syntax may also be used with the : : /1 message sending control construct.

1.3.6 Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This functionality,
introduced by the Smalltalk language through the super primitive, is available in Logtalk using the /I control
construct:

Most of the time we will use this control construct by instantiating the pattern:

Predicate :-

o7 g 10 sometning

~“"~Predicate, > ca inherited de

This control construct is generalized in Logtalk where it may be used to call any imported or inherited predicate
definition. This control construct may be used within objects and categories. When combined with static binding, this
control construct allows imported and inherited predicates to be called with the same performance of local predicates.
As with the message sending control constructs, the ~~ /1 call simply fails when the predicate is declared but not
defined (as per the closed-world assumption).

1.3.7 Message sending and event generation

Every message sent using the ::/2 control construct generates two events, one before and one after the message execu-
tion. Messages that are sent using the ::// (message to self) control construct or the /] super mechanism described
above do not generate any events. The rationale behind this distinction is that messages to self and super calls are only
used internally in the definition of methods or to execute additional messages with the same target object (represented
by self). In other words, events are only generated when using an object’s public interface; they cannot be used to
break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

(continues on next page)

8 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

self (Self),
{Self::Message},

When events are not used, is possible to turn off event generation on a per object basis by using the events compiler
flag (see the Event-driven programming section for more details).

1.4 Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database containing
all your code, Logtalk objects provide separated namespaces or databases allowing the partitioning of code in more
manageable parts. Logtalk is a declarative programming language and does not aim to bring some sort of new dynamic
state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and logtalk, which are described at the end of this section.

1.4.1 Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk uses the
term object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and instance always
designate an object. Different names are used to emphasize the role played by an object in a particular context. Le.
we use a term other than object when we want to make the relationship with other objects explicit. For example, an
object with an instantiation relation with other object plays the role of an instance, while the instantiated object plays
the role of a class; an object with a specialization relation with other object plays the role of a subclass, while the
specialized object plays the role of a superclass; an object with an extension relation with other object plays the role of
a prototype, the same for the extended object. A stand-alone object, i.e. an object with no relations with other objects,
is always interpreted as a prototype. In Logtalk, entity relations essentially define patterns of code reuse. An entity is
compiled accordingly to the roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-based.
You may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs, use parametric
objects, and take advantage of protocols and categories (think components).

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they share
common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually represent concrete
objects in the application domain. When linking prototypes using extension relations, Logtalk uses the term proto-
type hierarchies although most authors prefer to use the term hierarchy only with class generalization/specialization
relations. In the context of logic programming, prototypes are often the ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes provide an ideal structuring
solution when you want to express hierarchies of abstractions or work with many similar objects. Classes are used
indirectly through instantiation. Contrary to most object-oriented programming languages, instances can be created
both dynamically at runtime or defined in a source file like other objects.

1.4. Objects 9

https://logtalk.org/library/user_0.html#user-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

1.4.2 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity in its own source file, it is
recommended that the file be named after the object. By default, all Logtalk source files use the extension . 1gt but
this is optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler)
have, by default, a _1gt suffix and a . pl extension. Again, this can be set to match the needs of a particular Prolog
compiler in the corresponding adapter file. For instance, we may define an object named vehicle and save it in a
vehicle.lgt source file which will be compiled to a vehicle_1lgt.pl Prolog file (depending on the backend
compiler, the names of the intermediate Prolog files may include a directory hash).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects, categories,
and protocols share the same name space: we cannot have an object with the same name as a protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/I-5 and
end_object/0. The most simple object will be one that is self-contained, not depending on any other Logtalk entity:

:— object (Object).

:— end_object.

If an object implements one or more protocols then the opening directive will be:

:— object (Object,
implements ([Prot

:— end_object.

An object can import one or more categories:

:— object (Object,
imports ([Categoryl, Category2, ...1)).

:— end_object.

If an object both implements protocols and imports categories then we will write:

:— object (Object,
implements ([Protoco
imports ([Cate

:— end_object.

In object-oriented programming objects are usually organized in hierarchies that enable interface and code sharing by
inheritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:— object (Prototype,
extends (Parent)) .

:— end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between objects. To
define an object as a class instance we will write:

:— object (Object,
instantiates (Class)) .

:— end_object.

10 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

A class may specialize another class, its superclass:

:— object (Class,
specializes (Superclass)).

:— end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the following
pattern:

:— object (Class,
instantiates (Metaclass),
specializes (Superclass)).

:— end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be prototype-based
(defined by extending other objects) or class-based (with instantiation and specialization relations). An object may
also implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other objects) is
always compiled as a prototype, that is, a self-describing object. If we want to use classes and instances, then we will
need to specify at least one instantiation or specialization relation. The best way to do this is to define a set of objects
that provide the basis of a reflective system [Cointe87], [Moura94]. For example:

object (object,
instantiates (class)) .

:— end_object.

:— object (class,
instantiates (class),
specializes (abstract_class)) .

:— end_object.

object (abstract_class,
instantiates (class),
specializes (object)) .

end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at the
same time, classes and instances of some class. In addition, each object inherits its own predicates and the predicates
of the other two objects without any inheritance loop problems.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making an object
an instance of itself, i.e. by making a class its own metaclass. For example:

1.4. Objects 11

The Logtalk Handbook, Release v3.21.0

:— object (class,
instantiates(class)) .

:— end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange messages be-
tween all objects). We cannot however mix the two types of hierarchies by, e.g., specializing an object that extends
another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See the inheritance section for details.

1.4.3 Parametric objects

Parametric objects have a compound term for name instead of an atom. This compound term usually contains free
variables that can be instantiated when sending or as a consequence of sending a message to the object, thus acting as
object parameters. The object predicates can then be coded to depend on those parameters, which are logical variables
shared by all object predicates. When an object state is set at object creation and never changed, parameters provide
a better solution than using the object’s database via asserts. Parametric objects can also be used to associate a set of
predicates to terms that share a common functor and arity.

In order to give access to an object parameter, Logtalk provides a parameter/2 built-in local method:

:— object (Functor (Argl, Arg2, ...)).
Predicat -
’
parameter (Number, Value),

An alternative solution is to use the built-in local method this/I. For example:

:— object (foo (Arg)) .

bar :-

this (foo(Arg)),

Both solutions are equally efficient as calls to the methods this/1 and parameter/2 are usually compiled inline
into a clause head unification. The drawback of this second solution is that we must check all calls of this/1 if we
change the object name. Note that we can’t use these method with the message sending operators (::/2, ::/1, or “Y1).

A third alternative to access object parameters is to use parameter variables. Although parameter variables introduce a
concept of entity global variables, they allow object parameters to be added, rearranged, or removed without requiring
any changes to the clauses that refer to them. Note that using parameter variables doesn’t change the fact that entity
parameters are logical variables. For example:

:— object (foo (_Arg_)).

bar :-

(continues on next page)

12 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

When storing a parametric object in its own source file, the convention is to name the file after the object, with the
object arity appended. For instance, when defining an object named sort (Type), we may save itin a sort_1.
1gt text file. This way it is easy to avoid file name clashes when saving Logtalk entities that have the same functor
but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object identifier may
act as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and be used to represent
different instantiations of a parametric object identifier. Logtalk provides a convenient notation for accessing proxies
represented as Prolog facts when sending a message:

., {Proxy}::Message,

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to the cor-
responding parametric object. Typically, the proof allows retrieving of parameter instantiations. This construct can
either be used with a proxy argument that is sufficiently instantiated in order to unify with a single Prolog fact or with
a proxy argument that unifies with several facts on backtracking.

1.4.4 Finding defined objects

We can find, by backtracking, all defined objects by calling the current_object/I built-in predicate with a non-
instantiated variable:

| ?- current_object (Object) .
Object = logtalk ;
Object = user ;

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an atom or a
compound term).

1.4.5 Creating a new object in runtime

An object can be dynamically created at runtime by using the create_object/4 built-in predicate:

| ?- create_object (Object, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new object (a Prolog atom or compound term, which
must not match any existing entity name). The remaining three arguments correspond to the relations described in the
opening object directive and to the object code contents (directives and clauses).

For example, the call:

| ?- create_object (
foo,
[extends (bar)],
[public (foo/1)],
[foo(1l), foo(2)]

is equivalent to compiling and loading the object:

1.4. Objects 13

The Logtalk Handbook, Release v3.21.0

:— object (foo,
extends (bar)) .

:— dynamic.
:— public(foo/1).
foo(l).

foo(2).

:— end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype with a
predicate that will call this built-in predicate to make new objects. This predicate may provide automatic object name
generation, name checking, and accept object initialization options.

1.4.6 Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/I built-in predicate:

| ?- abolish_object (Object) .

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

1.4.7 Object directives

Object directives are used to set initialization goals, define object properties, to document an object dependencies on
other Logtalk entities, and to load the contents of files into an object.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the initialization/I
directive:

:— initialization(Goal).

The argument can be any valid Prolog or Logtalk goal, including a message to other object. For example:

:— object (foo) .

:— initialization(init).
:— private (init/0) .

init :—

:— end_object.

Or:

14 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

:— object (assembler) .

:— initialization(control::start).

:— end_object.

The initialization goal can also be a message to self in order to call an inherited or imported predicate. For example,
assuming that we have a monitor category defining a reset /0 predicate:

:— object (profiler,
imports (monitor)) .

:— initialization(::reset).

:— end_object.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes the object
that contains the directive. Also note that by initialization we do not necessarily mean setting an object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution of a
program is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects are declared
by using the dynamic/0 directive in the object source code:

:— dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code results in a
performance hit when compared to static code. We should only use dynamic objects when these need to be abolished
during program execution. In addition, note that we can declare and define dynamic predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using the info/I directive:

:— info (List).

See the Documenting applications section for details.

Loading files into an object

The include/I directive can be used to load the contents of a file into an object. A typical usage scenario is to load a
plain Prolog database into an object thus providing a simple way to encapsulate it. For example, assume a cities.
pl file defining facts for a city/4 predicate. We could define a wrapper for this database by writing:

:— object (cities).
:— public(city/4).
:— include(dbs('cities.pl')).

:— end_object.

1.4. Objects 15

The Logtalk Handbook, Release v3.21.0

The include/1 directive can also be used when creating an object dynamically. For example:

| ?- create_object (cities, [], [public(city/4), include (dbs('cities.pl'))]l, [1]).

1.4.8 Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relationships that
an object may have with other entities.

The built-in predicates instantiates_class/2-3 and instantiates_class/2-3 can be used to query all instantiation relations:

’I ?—- instantiates_class (Instance, Class).

or, if we want to know the instantiation scope:

’I ?- instantiates_class (Instance, Class, Scope).

Specialization relations can be found by using either the specializes_class/2-3 or the specializes_class/2-3 built-in
predicates:

’I ?— specializes_class(Class, Superclass).

or, if we want to know the specialization scope:

’I ?— specializes_class(Class, Superclass, Scope).

For prototypes, we can query extension relations with the extends_object/2-3 or the extends_object/2-3 built-in predi-
cates:

’I ?- extends_object (Object, Parent).

or, if we want to know the extension scope:

’I ?- extends_object (Object, Parent, Scope).

In order to find which objects import which categories we can use the built-in predicates imports_category/2-3 or
imports_category/2-3:

’I ?- imports_category (Object, Category).

or, if we want to know the importation scope:

’I ?— imports_category (Object, Category, Scope).

To find which objects implements which protocols we can wuse the implements_protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

’l ?— implements_protocol (Object, Protocol, Scope).

or, if we also want inherited protocols:

’I ?— conforms_to_protocol (Object, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/I built-in
predicate to ensure that the entity returned is an object and not a category.

16 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

To find which objects are explicitly complemented by categories we can use the complements_object/2 built-in predi-
cate:

| ?- complements_object (Category, Object).

Note that more than one category may explicitly complement a single object and a single category can complement
several objects.

1.4.9 Object properties

We can find the properties of defined objects by calling the built-in predicate object_property/2:

| ?- object_property (Object, Property).

The following object properties are supported:
static The object is static

dynamic The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/I built-in pred-
icate)

built_in The object is a built-in object (and thus always available)

threaded The object supports/makes multi-threading calls

file (Path) Absolute path of the source file defining the object (if applicable)

file (Basename, Directory) Basename and directory of the source file defining the object (if applicable)
lines (BeginLine, EndLine) Source file begin and end lines of the object definition (if applicable)

context_switching calls The object supports context switching calls (i.e. can be used with the <</2 debug-
ging control construct)

dynamic_declarations The object supports dynamic declarations of predicates
events Messages sent from the object generate events
source_data Source data available for the object

complements (Permission) The object supports complementing categories with the specified permission
(allowor restrict)

complements The object supports complementing categories

public (Predicates) List of public predicates declared by the object

protected (Predicates) List of protected predicates declared by the object

private (Predicates) List of private predicates declared by the object

declares (Predicate, Properties) List of properties for a predicate declared by the object
defines (Predicate, Properties) Listof properties for a predicate defined by the object

includes (Predicate, Entity, Properties) List of properties for an object multifile predicate
that are defined in the specified entity (the properties include number_of_clauses (Number),
number_of_rules (Number),and 1ine_count (Line) with Line being the begin line of the multifile
predicate clause)

provides (Predicate, Entity, Properties) List of properties for other entity multifile pred-
icate that are defined in the object (the properties include number_of_clauses (Number),
number_of_rules (Number),and line_count (Line) with Line being the begin line of the multifile
predicate clause)

1.4. Objects 17

The Logtalk Handbook, Release v3.21.0

alias (Predicate, Properties) List of properties for a predicate alias declared by the object
(the properties include for (Original), from(Entity), non_terminal (NonTerminal), and
line_count (Line) with Line being the begin line of the alias directive)

calls (Call, Properties) Listof properties for predicate calls made by the object (Call is either a predicate
indicator or a control construct such as ::/1-2 or ~*/1 with a predicate indicator as argument; note that
Call may not be ground in case of a call to a control construct where its argument is only know at runtime;
the properties include caller (Caller),alias (Alias),and line_count (Line) withboth Caller
and Al1ias being predicate indicators and Line being the begin line of the predicate clause or directive making
the call)

updates (Predicate, Properties) List of properties for dynamic predicate updates (and also access using
the clause/2 predicate) made by the object (Predicate is either a predicate indicator or a control construct
such as : : /1-2 or : /2 with a predicate indicator as argument; note that Predicate may not be ground in
case of a control construct argument only know at runtime; the properties include updater (Updater),
alias(Alias),and line_count (Line) with Updater being a (possibly multifile) predicate indicator,
Alias being a predicate indicator, and Line being the begin line of the predicate clause or directive updating
the predicate)

number_ of_clauses (Number) Total number of predicate clauses defined in the object at compilation time
(includes both user-defined clauses and auxiliary clauses generated by the compiler or by the expansion hooks)

number_of_rules (Number) Total number of predicate rules defined in the object at compilation time (includes
both user-defined rules and auxiliary rules generated by the compiler or by the expansion hooks)

number_ of_ user_clauses (Number) Total number of user-defined predicate clauses defined in the object at
compilation time

number_ of_user_rules (Number) Total number of user-defined predicate rules defined in the object at com-
pilation time

debugging The object is compiled in debug mode
module The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is
:=/1.

Some of the properties such as line numbers are only available when the object is defined in a source file compiled
with the source_data flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the object for both
multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile predicates contributed
by other entities.

1.4.10 Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

Logtalk defines a built-in, pseudo-object named user that virtually contains all user predicate definitions not encap-
sulated in a Logtalk entity. These predicates are assumed to be implicitly declared public. Messages sent from this
pseudo-object, which includes messages sent from the top-level interpreter, generate events when the default value of
the events flag is set to allow. Defining complementing categories for this pseudo-object is not supported.

18 Chapter 1. User Manual

https://logtalk.org/library/user_0.html#user-0

The Logtalk Handbook, Release v3.21.0

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk (com-
piler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-object user virtually
contains all user predicate definitions defined in the module where Logtalk was loaded.

The built-in object logtalk

Logtalk defines a built-in object named 1ogtalk that provides structured message printing mechanism predicates,
structured question asking predicates, debugging event predicates, predicates for accessing the internal database of
loaded files and their properties, and also a set of low-level utility predicates normally used when defining hook
objects.

The following predicates are defined:

expand_library path (Library, Path) Expands a file specification in library notation to a full operating-
system path.

loaded file(Path) Returns the full path of a currently loaded source file.

loaded_file_ property(Path, Property) Returns a property for a currently loaded source file. Valid
properties are basename/1, directory/1, flags/1 (explicit flags used when the file was loaded),
text_properties/1 (list, possibly empty, whose possible elements are encoding/1 and bom/1),
target /1 (full path for the Prolog file generated by the compilation of the loaded source file), nodified/1
(time stamp that should be treated as an opaque term but that may be used for comparisons), parent /1 (parent
file, if it exists, that loaded the file; a file may have multiple parents), and 1ibrary/1 (library name when there
is a library whose location is the same as the loaded file directory).

compile_aux_clauses (Clauses) Compiles a list of clauses in the context of the entity under compilation.
This method is usually called from goal_expansion/2 hooks in order to compile auxiliary clauses gener-
ated for supporting an expanded goal. The compilation of the clauses avoids the risk of making the predicate
whose clause is being goal-expanded discontiguous by accident.

entity prefix (Entity, Prefix) Converts an entity identifier into its internal prefix or an internal prefix
into an entity identifier.

compile_predicate_heads (Heads, Entity, TranslatedHeads, ContextArgument)
Compiles a predicate head or a list of predicate heads in the context of the specified entity or in the
context of the entity being compiled when Ent ity is not instantiated.

compile_predicate_indicators (PredicateIndicators, Entity, TranslatedPredicateIndicators)
Compiles a predicate indicator or a list of predicate indicators in the context of the specified entity or in the
context of the entity being compiled when Ent ity is not instantiated.

decompile_predicate_heads (TranslatedHeads, Entity, EntityType, Heads) Decompiles
a compiled predicate head or a list of compiled predicate heads returning the entity, entity type, and source level
heads. Requires the entity to be currently loaded.

decompile predicate_indicators (TranslatedPredicateIndicators, Entity, EntityType, Predicat
Decompiles a compiled predicate indicator or a list of compiled predicate indicators returning the entity, entity
type, and source level predicate indicators. Requires the entity to be currently loaded.

execution_context (ExecutionContext, Entity, Sender, This, Self, MetaCallContext, Stack)
Allows constructing and accessing execution context components.

print_message (Kind, Component, Term) Prints a message term after converting it into a list of tokens
using the message_tokens//2 hook non-terminal. When the conversion fails, the message term itself is
printed.

print_message_tokens (Stream, Prefix, Tokens) Prints a list of message tokens to the specified
stream and prefixing each line with the specified prefix.

1.4. Objects 19

The Logtalk Handbook, Release v3.21.0

print_message_token (Stream, Prefix, Token, Tokens) Hook predicate, declared multifile and
dynamic, allowing the default printing of a token to be overridden.

message_tokens (Term, Component) Hook non-terminal, declared multifile and dynamic, allowing the
translation of a message into a list of tokens for printing.

message_prefix_stream(Kind, Component, Prefix, Stream) Hook predicate, declared multifile
and dynamic, allowing the definition of line prefix and output stream for messages.

message_hook (Term, Kind, Component, Tokens) Hook predicate, declared multifile and dynamic, al-
lowing the overriding the default printing of a message.

trace_event (Event, EventExecutionContext) Hook predicate, declared multifile and dynamic, for
handling trace events generated by the execution of source code compiled in debug mode. The Logtalk runtime
calls all defined handlers using a failure-driven loop. Thus, care must be taken that the handlers are deterministic
to avoid potential termination issues.

debug _handler_ provider (Provider) Multifile predicate for declaring an object that provides a debug han-
dler. There can only be one debug handler provider loaded at the same time. The Logtalk runtime uses this hook
predicate for detecting multiple instances of the handler and for better error reporting.

debug_handler (Event, EventExecutionContext) Multifile predicate for handling debug events gener-
ated by the execution of source code compiled in debug mode.

To use these predicates, simply send the corresponding message to the 1ogtalk object.

1.5 Protocols

Protocols enable the separation between interface and implementation: several objects can implement the same pro-
tocol and an object can implement several protocols. Protocols may contain only predicate declarations. In some
languages the term interface is used with similar meaning. Logtalk allows predicate declarations of any scope within
protocols, contrary to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the end of this
section.

1.5.1 Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity in its own source file, it is
recommended that the file be named after the protocol. By default, all Logtalk source files use the extension . 1gt but
this is optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler)
have, by default, a _1gt suffix and a . pl extension. Again, this can be set to match the needs of a particular Prolog
compiler in the corresponding adapter file. For example, we may define a protocol named 1istp and save it in a
listp. lgt source file that will be compiled toa 1istp_lgt .pl Prolog file (depending on the backend compiler,
the names of the intermediate Prolog files may include a directory hash).

Protocol names must be atoms. Objects, categories and protocols share the same namespace: we cannot have a
protocol with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/I-2 and end_protocol/0. The
most simple protocol will be one that is self-contained, not depending on any other Logtalk entity:

:— protocol (Protocol) .

:— end_protocol.

20 Chapter 1. User Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.21.0

If a protocol extends one or more protocols, then the opening directive will be:

:— protocol (Pro
extends ([Prc

:— end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same functionality.
Therefore, the only recommended use of protocol extension is when you need both a minimal protocol and an extended
version of the same protocol with additional, useful predicates.

1.5.2 Finding defined protocols

We can find, by backtracking, all defined protocols by using the current_protocol/I built-in predicate with a non-
instantiated variable:

| ?- current_protocol (Protocol) .

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an atom).

1.5.3 Creating a new protocol in runtime

We can create a new (dynamic) protocol in runtime by calling the Logtalk built-in predicate create_protocol/3:

| ?- create_protocol (Protocol, Relations, Directives).

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must not match
an existing entity name). The remaining two arguments correspond to the relations described in the opening protocol
directive and to the protocol directives.

For instance, the call:

| ?- create_protocol (ppp, [extends(gqq)], [public([foo/1l, bar/1]1)1]).

is equivalent to compiling and loading the protocol:

:— protocol (ppp,
extends (gqq)) .

:— dynamic.

:— public([foo/1l, bar/1]1).

:— end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is best to define a metaclass or a prototype with a
predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.5.4 Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/I built-in predicate:

| ?- abolish_protocol (Protocol).

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

1.5. Protocols 21

The Logtalk Handbook, Release v3.21.0

1.5.5 Protocol directives

Protocol directives are used to define protocol properties and documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during the
execution of a program is always dynamic. A protocol defined in a file can be either dynamic or static. Dynamic
protocols are declared by using the dynamic/0 directive in the protocol source code:

:— dynamic.

The directive must precede any predicate directives. Please be aware that using dynamic code results in a performance
hit when compared to static code. We should only use dynamic protocols when these need to be abolished during
program execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/I directive:

:— info (List).

See the Documenting applications section for details.

Loading files into a protocol

The include/I directive can be used to load the contents of a file into a protocol. See the Objects section for an example
of using this directive.

1.5.6 Protocol relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the possible relationships that
a protocol have with other entities.

The built-in predicates extends_protocol/2-3 and extends_protocol/2-3 return all pairs of protocols so that the first one
extends the second:

’I ?— extends_protocol (Protocoll, Protocol2).

or, if we want to know the extension scope:

’I ?— extends_protocol (Protocoll, Protocol2, Scope).

To find which objects or categories implement which protocols we can call the implements_protocol/2-3 or
implements_protocol/2-3 built-in predicates:

’ | ?- implements_protocol (ObjectOrCategory, Protocol).

or, if we want to know the implementation scope:

’I ?— implements_protocol (ObjectOrCategory, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/I or
current_category/I built-in predicates to identify the kind of entity returned.

22 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

1.5.7 Protocol properties

We can find the properties of defined protocols by calling the protocol_property/2 built-in predicate:

| ?- protocol_property (Protocol, Property).

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in
runtime by calling the abolish_protocol/I built-in predicate. Depending on the backend Prolog compiler, a protocol
may have additional properties related to the source file where it is defined.

The following protocol properties are supported:
static The protocol is static

dynamic The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category/I built-in
predicate)

built_in The protocol is a built-in protocol (and thus always available)

source_data Source data available for the protocol

file (Path) Absolute path of the source file defining the protocol (if applicable)

file (Basename, Directory) Basename and directory of the source file defining the protocol (if applicable)
lines (BeginLine, EndLine) Source file begin and end lines of the protocol definition (if applicable)
public (Predicates) List of public predicates declared by the protocol

protected (Predicates) List of protected predicates declared by the protocol

private (Predicates) List of private predicates declared by the protocol

declares (Predicate, Properties) List of properties for a predicate declared by the protocol

alias (Predicate, Properties) List of properties for a predicate alias declared by the protocol
(the properties include for (Original), from(Entity), non_terminal (NonTerminal), and
line_count (Line) with Line being the begin line of the alias directive)

Some of the properties such as line numbers are only available when the protocol is defined in a source file compiled
with the source_data flag turned on.

1.5.8 Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:— object (Object,
implements (Protocol)) .

:— end_object.

or, in the case of a category:

:— category (Object,

:— end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and protected
predicates private we prefix the protocol’s name with the corresponding keyword. For instance:

1.5. Protocols 23

The Logtalk Handbook, Release v3.21.0

:— object (Object,
implements (private: :Protocol)) .

:— end_object.

or:

:— object (Object,
implements (protected: :Protocol)).

:— end_object.

Omitting the scope keyword is equivalent to writing:

:— object (Object,
implements (public::Protocol)) .

:— end_object.

The same rules applies to protocols implemented by categories.

1.5.9 Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

Logtalk defines a built-in protocol named expanding that declares the rerm_expansion/2 and goal_expansion/2 predi-
cates. See the description of the ook compiler flag for more details.

The built-in protocol monitoring

Logtalk defines a built-in protocol named monitoring declares the before/3 and after/3 public event handler predicates.
See the Event-driven programming section for more details.

The built-in protocol forwarding

Logtalk defines a built-in protocol named forwarding that declares the forward/I user-defined message forwarding
handler, which is automatically called (if defined) by the runtime for any message that the receiving object does not
understand. See also the /]/I control construct.

1.6 Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories provide
a way to encapsulate a set of related predicate declarations and definitions that do not represent a complete object
and that only make sense when composed with other predicates. Categories may also be used to break a complex
object in functional units. A category can be imported by several objects (without code duplication), including objects
participating in prototype or class-based hierarchies. This concept of categories shares some ideas with Smalltalk-80
functional categories [Goldberg83], Flavors mix-ins [Moon86] (without necessarily implying multi-inheritance), and
Objective-C categories [Cox86]. Categories may also complement existing objects, thus providing a hot patching
mechanism inspired by the Objective-C categories functionality.

24 Chapter 1. User Manual

https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.21.0

1.6.1 Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity in its own source file, it is
recommended that the file be named after the category. By default, all Logtalk source files use the extension . 1gt but
this is optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler)
have, by default, a _1gt suffix and a . pl extension. Again, this can be set to match the needs of a particular Prolog
compiler in the corresponding adapter file. For example, we may define a category named documenting and save
itin a documenting. 1gt source file that will be compiled to a documenting_lgt .pl Prolog file (depending
on the backend compiler, the names of the intermediate Prolog files may include a directory hash).

Category names can be atoms or compound terms (when defining parametric categories). Objects, categories, and
protocols share the same name space: we cannot have a category with the same name as an object or a protocol.

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives: category/I-3 and
end_category/0. The most simple category will be one that is self-contained, not depending on any other Logtalk
entity:

:— category (Cate

:— end_category.

If a category implements one or more protocols then the opening directive will be:

:— category (Cate
implements ([Protocoll, Protocol2, ...]1)).

:— end_category.

A category may be defined as a composition of other categories by writing:

:— category (Ca

:— end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for example,
when a modified version of a category is needed for importing on several unrelated objects). The preferred way of
composing several categories is by importing them into an object. When a category overrides a predicate defined in an
extended category, the overridden definition can still be called by using the *Y// control construct.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates. This
restriction applies because a category can be imported by several objects and because we cannot use the database
handling built-in methods with categories (messages can only be sent to objects). However, categories may contain
declarations for dynamic predicates and they can contain predicates which handle dynamic predicates. For example:

:— category (attributes) .

:— public (attribute/2).
:— public(set_attribute/2).
:— public(del_attribute/2).

:— private (attribute_/2).
:— dynamic (attribute_/2) .

attribute (Attribute, Value) :-—

Ted 1 +he context £ Man] FM

(continues on next page)

1.6. Categories 25

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

crattribute_ (Attribute, Value).

set_attribute (A

::retractall (attribu
% assert new clause

::assertz (attribute_ (Attribute, Value)).

del_attribute (Attribute

S et ract o] s
o retract L e 11

::retract (attribute_ (Attribute, Value)).

:— end_category.

Each object importing this category will have its own attribute_/2 private, dynamic predicate. The predicates
attribute/2, set_attribute/2,and del_attribute/2 always access and modify the dynamic predicate
contained in the object receiving the corresponding messages (i.e. self). But it’s also possible to define predicates that
handle dynamic predicates in the context of #his instead of self. For example:

:— category (attributes) .

:— public (attribute/2).
:— public(set_attribute/2).
public(del_attribute/2).

:— private (attribute_/2).
:— dynamic (attribute_/2).
attribute (Attribute,

th

set_attribute (Attribute

retractall (attribute

> asserts clause 1in

assertz (attribute_ (Attribute, Value)).

:— end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties those
dynamic predicates to the object importing the category while working in the context of self allows each object
inheriting from the object that imports the category to have its own set of clauses for those dynamic predicates.

Hot patching

A category may explicitly complement one or more existing objects, thus providing /0t patching functionality inspired
by Objective-C categories:

:— category (Category,
complements ([Objectl, Object2,1)).

(continues on next page)

26 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

:— end_category.

This allows us to add missing directives (e.g. to define aliases for complemented object predicates), replace broken
predicate definitions, add new predicates, and add protocols and categories to existing objects without requiring access
or modifications to their source code. Common scenarios are adding logging or debugging predicates to a set of objects.
Complemented objects need to be compiled with the complements compiler flag set allow (to allow both patching
and adding functionality) or restrict (to allow only adding new functionality). A complementing category takes
preference over a previously loaded complementing category for the same object thus allowing patching a previous
patch if necessary.

Note that super calls from predicates defined in complementing categories lookup inherited definitions as if the calls
were made from the complemented object instead of the category ancestors. This allows more comprehensive object
patching. But it also means that, if you want to patch an object so that it imports a category that extends another
category and uses super calls to access the extended category predicates, you will need to define a (possibly empty)
complementing category that extends the category that you want to add.

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category is that it
disables the use of static binding optimizations for messages sent to the complemented object as it can always be later
patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local callers of
the replaced predicate will still call the unpatched version of the predicate. This is a consequence of the lack of a
portable solution at the backend Prolog compiler level for destructively replacing static predicates.

1.6.2 Finding defined categories

We can find, by backtracking, all defined categories by using the current_category/I built-in predicate with a non-
instantiated variable:

| ?— current_category (Category) .

This predicate can also be used to test if a category is defined by calling it with a valid category identifier (an atom or
a compound term).

1.6.3 Creating a new category in runtime

A category can be dynamically created at runtime by using the create_category/4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new category (a Prolog atom, which must not match
with an existing entity name). The remaining three arguments correspond to the relations described in the opening
category directive and to the category code contents (directives and clauses).

For example, the call:

| ?- create_category (
cce,
[implements (ppp) 1,
[private (bar/1)1,
[(foo(X) :-bar (X)), bar(l), bar(2)]

1.6. Categories 27

The Logtalk Handbook, Release v3.21.0

is equivalent to compiling and loading the category:

:— category(ccc,
implements (ppp)) .

:— dynamic.
:— private (bar/1).

foo(X) :—
bar (X) .

bar (1) .
bar(2) .

:— end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to define a metaclass or a prototype with a
predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.6.4 Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/I built-in predicate:

| ?- abolish_category (Category) .

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

1.6.5 Category directives

Category directives are used to define category properties, to document a category dependencies on other Logtalk
entities, and to load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during the
execution of a program is always dynamic. A category defined in a file can be either dynamic or static. Dynamic
categories are declared by using the dynamic/0 directive in the category source code:

:— dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code results in
a performance hit when compared to static code. We should only use dynamic categories when these need to be
abolished during program execution.

Category documentation

A category can be documented with arbitrary user-defined information by using the info/I directive:

:— info (List).

See the Documenting applications section for details.

28 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Loading files into a category

The include/I directive can be used to load the contents of a file into a category. See the Objects section for an example
of using this directive.

1.6.6 Category relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible relationships that
a category can have with other entities.

The built-in predicates implements_protocol/2-3 and conforms_to_protocol/2-3 allows us to find which categories
implements which protocols:

’l ?— implements_protocol (Category, Protocol, Scope).

or, if we also want inherited protocols:

’I ?— conforms_to_protocol (Category, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_category/I
built-in predicate to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use the imports_category/2-3 or imports_category/2-3 built-in
predicates:

’I ?- imports_category (Object, Category).

or, if we also want to know the importation scope:

’I ?— imports_category (Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the extends_category/2-3 or extends_category/2-3 built-in
predicates:

’I ?— extends_category (Categoryl, Category?2).

or, if we want to know the extension scope:

’I ?- extends_category (Categoryl, Category2, Scope).

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in predi-
cate:

| ?- complements_object (Category, Object).

Note that a category may explicitly complement several objects.

1.6.7 Category properties

We can find the properties of defined categories by calling the built-in predicate category_property/2:

1.6. Categories 29

The Logtalk Handbook, Release v3.21.0

| ?- category_property (Category, Property).

The following category properties are supported:
static The category is static

dynamic The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/I built-in
predicate)

built_in The category is a built-in category (and thus always available)

file (Path) Absolute path of the source file defining the category (if applicable)

file (Basename, Directory) Basename and directory of the source file defining the category (if applicable)
lines (BeginLine, EndLine) Source file begin and end lines of the category definition (if applicable)
events Messages sent from the category generate events

source_data Source data available for the category

public (Predicates) List of public predicates declared by the category

protected (Predicates) List of protected predicates declared by the category

private (Predicates) List of private predicates declared by the category

declares (Predicate, Properties) List of properties for a predicate declared by the category
defines (Predicate, Properties) Listof properties for a predicate defined by the category

includes (Predicate, Entity, Properties) List of properties for an object multifile predicate
that are defined in the specified entity (the properties include number_of_clauses (Number),
number_of_rules (Number),and line_count (Line) with Line being the begin line of the multifile
predicate clause)

provides (Predicate, Entity, Properties) List of properties for other entity multifile predi-
cate that are defined in the category (the properties include number_of_clauses (Number),
number_of_rules (Number),and 1ine_count (Line) with Line being the begin line of the multifile
predicate clause)

alias (Predicate, Properties) List of properties for a predicate alias declared by the category
(the properties include for (Original), from(Entity), non_terminal (NonTerminal), and
line_count (Line) with Line being the begin line of the alias directive)

calls(Call, Properties) Listof properties for predicate calls made by the category (Call is either a predi-
cate indicator or a control construct such as : : /1-2 or ~~/1 with a predicate indicator as argument; note that
Call may not be ground in case of a call to a control construct where its argument is only know at runtime;
the properties include caller (Caller),alias (Alias),and line_count (Line) withboth Caller
and Alias being predicate indicators and Line being the begin line of the predicate clause or directive making
the call)

updates (Predicate, Properties) List of properties for dynamic predicate updates (and also access using
the clause/2 predicate) made by the object (Predicate is either a predicate indicator or a control construct
such as : : /1-2 or : /2 with a predicate indicator as argument; note that Predicate may not be ground in
case of a control construct argument only know at runtime; the properties include updater (Updater),
alias(Alias),and line_count (Line) with Updater being a (possibly multifile) predicate indicator,
Alias being a predicate indicator, and Line being the begin line of the predicate clause or directive updating
the predicate)

number_ of_clauses (Number) Total number of predicate clauses defined in the category (includes both user-
defined clauses and auxiliary clauses generated by the compiler or by the expansion hooks)

30 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

number_of_rules (Number) Total number of predicate rules defined in the category (includes both user-defined
rules and auxiliary rules generated by the compiler or by the expansion hooks)

number_ of_ user_clauses (Number) Total number of user-defined predicate clauses defined in the category
number_ of_user_rules (Number) Total number of user-defined predicate rules defined in the category

Some properties such as line numbers are only available when the category is defined in a source file compiled with
the source_data flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the object for both
multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile predicates contributed
by other entities.

1.6.8 Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories. The syntax
is very simple:

:— object (Object,
imports ([Categoryl, Category2, ...1)).

:— end_object.

To make all public predicates imported via a category protected or to make all public and protected predicates private
we prefix the category’s name with the corresponding keyword:

:— object (Object,
imports (private::Category)) .

:— end_object.

or:

:— object (Object,
imports (protected: :Category)) .

:— end_object.

Omitting the scope keyword is equivalent to writing:

:— object (Object,
imports (public::Category)).

:— end_object.

1.6.9 Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call. Consider
the following category:

:— category (output) .
:— public(out/1).

out (X) :—

(continues on next page)

1.6. Categories 31

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

write(X), nl.

:— end_category.

The predicate out /1 can be called from within an object importing the category by simply sending a message to self.
For example:

:— object (worker,
imports (output)) .

do(Task) :—
execute (Task, Result),
::out (Result) .

:— end_object.

This is the recommended way of calling a category predicate that can be specialized/overridden in a descendant object
as the predicate definition lookup will start from self.

A direct call the predicate definition found in an imported category can be made using the *// control construct. For
example:

:— object (worker,
imports (output)) .

do(Task) :—
execute (Tas!

k, Result),
~Mout (Result) .

:— end_object.

This alternative should only be used when the user knows a priori that the category predicates will not be specialized or
redefined by descendant objects of the object importing the category. Its advantage is that, when the optimize compiler
flag is turned on, the Logtalk compiler will try to optimize the calls by using static binding. When dynamic binding
is used due to e.g. the lack of sufficient information at compilation time, the performance is similar to calling the
category predicate using a message to self (in both cases a predicate lookup caching mechanism is used).

1.6.10 Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term as the
category identifier. The category parameters can be accessed by calling the parameter/2 or this/I built-in local methods
in the category predicate clauses or by using parameter variables. Category parameter values can be defined by the
importing objects. For example:

:— object (speech (Seaso
imports ([dress (Se

n, Event),
son), speech(Event)])).

:— end_object.

Note that access to category parameters is only possible from within the category. In particular, calls to the this// built-
in local method from category predicates always access the importing object identifier (and thus object parameters,

32 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

not category parameters).

1.7 Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain predicate
directives. From the point-of-view of a traditional imperative object-oriented language, predicates allows both object
state and object behavior to be represented. Mutable object state can be represented using dynamic object predicates.

1.7.1 Reserved predicate names

For practical and performance reasons, a few predicates have a fixed interpretation. These predicates are declared in
the built-protocols. They are: goal_expansion/2 and term_expansion/2, declared in the expanding protocol; before/3
and after/3, declared in the monitoring protocol; and forward/I, declared in the forwarding protocol. By default, the
compiler prints a warning when a definition for one of these predicates is found but the reference to the corresponding
built-in protocol is missing.

1.7.2 Declaring predicates

All object (or category) predicates that we want to access from other objects (or categories) must be explicitly declared.
A predicate declaration must contain, at least, a scope directive. Other directives may be used to document the
predicate or to ensure proper compilation of the predicate definitions.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can be
public, protected, private, or local. Public predicates can be called from any object. Protected predicates can only
be called from the container object or from a container descendant. Private predicates can only be called from the
container object. Local predicates, like private predicates, can only be called from the container object (or category)
but they are invisible to the reflection built-in methods (current_op/3, current_predicate/1, and predicate_property/2)
and to the message error handling mechanisms (i.e. sending a message corresponding to a local predicate results in a
predicate_declaration existence error instead of a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/I. For example:

:— public (init/1).
:— protected(valid_init_option/1).

:— private (process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration, it is assumed that the predicate is local. Note
that we do not need to write scope declarations for all defined predicates. One exception is local dynamic predicates:
declaring them as private predicates may allow the Logtalk compiler to generate optimized code for asserting and
retracting clauses.

Note that a predicate scope directive doesn’t specify where a predicate is, or can be, defined. For example, a private
predicate can only be called from an object holding its scope directive. But it can be defined in descendant objects.
A typical example is an object playing the role of a class defining a private (possibly dynamic) predicate for its
descendant instances. Only the class can call (and possibly assert/retract clauses for) the predicate but its clauses can
be found/defined in the instances themselves.

1.7. Predicates 33

https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.21.0

Mode directive

Often predicates can only be called using specific argument patterns. The valid arguments and instantiation modes of
those arguments can be documented by using the mode/2 directive. For example:

:— mode (member (?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum information will be the instantiation mode
of each argument. The first four possible values are described in [ISO95]). The remaining two can also be found in
use in some Prolog systems.

+ Argument must be instantiated (but not necessarily ground).

— Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned term with the
given term).

? Argument can either be instantiated or free.

@ Argument will not be further instantiated (modified).
++ Argument must be ground.

—— Argument must be unbound.

These six mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to
include type information for each argument like in the example above. Some possible type values are: event,
object, category, protocol, callable, term, nonvar, var, atomic, atom, number, integer,
float, compound, and 11ist. The first four are Logtalk specific. The remaining are common Prolog types. We can
also use our own types that can be either atoms or ground compound terms.

The second directive argument documents the number of proofs (but not necessarily distinct solutions) for the specified
mode. Note that different modes for the same predicate often have different determinism. The possible values are:

zero Predicate always fails.

one Predicate always succeeds once.

zero_or_one Predicate either fails or succeeds.

zero_or_more Predicate has zero or more proofs.

one_or_more Predicate has one or more proofs.

one_or_error Predicate either succeeds once or throws an error (see below).
error Predicate will throw an error (see below).

Mode declarations can also be used to document that some call modes will throw an error. For instance, regarding the
arg/3 and open/ 3 ISO Prolog built-in predicates, we may write:

:— mode (arg(-, -, +), error).
:— mode (open (@, @, —-—-), one_or_error).

Note that most predicates have more than one valid mode implying several mode directives. For example, to document
the possible use modes of the atom_concat /3 ISO built-in predicate we would write:

:— mode (atom_concat (?atom, ?atom, +atom), one_or_more).
:— mode (atom_concat (+atom, +atom, -—-atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of my knowl-
edge, there is no modern Prolog compiler supporting this kind of directive for that purpose. The current Logtalk version
simply parses this directive for collecting its information for use in the reflection API (assuming the source_data is

34 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

turned on). But see also see the description on synchronized predicates in the multi-threading programming section).
In any case, the use of mode directives is a good starting point for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or interpreted as closures that will be used for
constructing goals. To ensure that these goals will be executed in the correct context (i.e. in the calling context, not in
the meta-predicate definition context) we need to use the meta_predicate/I directive. For example:

:— meta_predicate (findall(x, 0, =*)).

The meta-predicate mode arguments in this directive have the following meaning:
0 Meta-argument that will be called as a goal.

N Meta-argument that will be a closure used to construct a call by appending N arguments. The value of N must be a
positive integer.

: Argument that is context-aware but that will not be used as a goal or a closure.
~ Goal that may be existentially quantified (Vars”Goal).
* Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to deal with
proprietary built-in meta-predicates and meta-directives:

/ Predicate indicator (Name /Arity), list of predicate indicators, or conjunction of predicate indicators.

// Non-terminal indicator (Name //Arity), list of predicate indicators, or conjunction of predicate indicators.
[0] List of goals.

[N] List of closures.

[/] List of predicate indicators.

[//]1 List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on Quintus
Prolog for providing information for predicate cross-reference tools.

As each Logtalk entity is independently compiled, this directive must be included in every object or category that
contains a definition for the described meta-predicate, even if the meta-predicate declaration is inherited from another
entity, to ensure proper compilation of meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the predicate
discontiguous by using the discontiguous/I directive:

:— discontiguous (foo/1) .

This is a directive that we should avoid using: it makes your code harder to read and it is not supported by some Prolog
compilers.

As each Logtalk entity is compiled independently of other entities, this directive must be included in every object or
category that contains a definition for the described predicate (even if the predicate declaration is inherited from other
entity).

1.7. Predicates 35

The Logtalk Handbook, Release v3.21.0

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic predicate
we use the dynamic/I directive:

:— dynamic (foo/1) .

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is compiled
independently from other entities, this directive must be included in every object that contains a definition for the
described predicate (even if the predicate declaration is inherited from other object or imported from a category). If
we omit the dynamic declaration then the predicate definition will be compiled static. In the case of dynamic objects,
static predicates cannot be redefined using the database built-in methods (despite being internally compiled to dynamic
code).

Dynamic predicates can be used to represent persistent mutable object state. Note that static objects may declare and
define dynamic predicates.

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

:— op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared. This means that, if you declare a public
predicate as an operator, you cannot use operator notation when sending to an object (where the predicate is visible)
the respective message (as this would imply visibility of the operator declaration in the context of the sender of the
message). If you want to declare global operators and, at the same time, use them inside an entity, just write the
corresponding directives at the top of your source file, before the entity opening directive.

When the same operators are used on several entities within the same source file, the corresponding directives must
appear before any entity that uses them. However, this results in a global scope for the operators. If you prefer the
operators to be local to the source file, just undefine them at the end of the file. For example:

:— op (400, xfx, results).

:— op(0, xfx, results).

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose due to
all the necessary message sending goals. Consider the following example:

foo :-
L4
findall (X, list::member (X, L), A),
list::append (2, B, C),
list::select (Y, C, R),

Logtalk provides a directive, uses/2, which allows us to simplify the code above. The usage template for this directive
is:

36 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

:— uses (Object, [
Namel/Arityl, Name2/Arity2,
1) .

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

:— uses (list, [
append/3, member/2, select/3

1) .

foo :-—
L4
findall (X, member (X, L), A),
append (A, B, C),
select (Y, C, R),

Logtalk also supports an extended version of this directive that allows the declaration of predicate aliases using the
notation Predicate as Alias (or the alternative notation Predicate: :Alias). For example:

:— uses (btrees, [new/l as new_btree/1]).
:— uses (queues, [new/l as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 directives or
just for giving new names to the predicates that will be more meaningful on their using context.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predicates
declared in the directive and the predicates defined in the object (or category) containing the directive. A predicate (or
its alias if defined) cannot be listed in more than one uses/2 directive. In addition, a uses /2 directive cannot list a
predicate (or its alias if defined) which is defined in the object (or category) containing the directive. Any conflicts are
reported by Logtalk as compilation errors.

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inherited or
imported grammar rule non-terminal) through the use of the alias/2 directive:

This directive can be used in objects, protocols, or categories. The first argument, Ent ity, must be an entity refer-
enced in the opening directive of the entity containing the alias/2 directive. It can be an extended or implemented
protocol, an imported category, an extended prototype, an instantiated class, or a specialized class. The second argu-
ment is a list of pairs of predicate indicators (or grammar rule non-terminal indicators) using the as infix operator as
connector.

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to improve
readability. For example:

:— object (square,
extends (rectangle)) .

:— alias(rectangle, [width/1 as side/1]).

(continues on next page)

1.7. Predicates 37

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

:— end_object.

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this
directive, there is no need to explicitly declare and define a “new” side/1 predicate. Note that the alias/2
directive does not rename a predicate, only provides an alternative, additional name; the original name continues to be
available (although it may be masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same functor and
arity. We may want to call the predicate which is masked out by the Logtalk lookup algorithm (see the Inheritance
section) or we may need to call both predicates. This is simply accomplished by using the alias/2 directive to give
alternative names to masked out or conflicting predicates. Consider the following example:

:— object (my_data_structure,
extends (1list, set)).

:— alias(list, [member/2 as list_member/2]).
:— alias (set, [member/2 as set_member/2]).

:— end_object.

Assuming that both 1ist and set objects define a member/2 predicate, without the alias/2 directives, only
the definition of member /2 predicate in the object 1ist would be visible on the object my_data_structure,
as a result of the application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the
following messages would be valid (assuming a public scope for the predicates):

% uses list member/2

| ?- my_data_structure::1list_member (X, L).
% uses set member/2

| ?—- my_data_structure::set_member (X, L).

% uses list member/2
| ?— my_data_structure: :member (X, L).

When used this way, the alias/2 directive provides functionality similar to programming constructs of other object-
oriented languages that support multi-inheritance (the most notable example probably being the renaming of inherited
features in Eiffel).

Note that the alias/2 directive never hides a predicate which is visible on the entity containing the directive as a
result of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which otherwise would
be masked by another predicate, as illustrated in the above example.

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be masked
by another inherited predicate, while keeping the original name as follows:

:— object (my_data_structure,
extends (1list, set)).

:— alias(list, [member/2 as list_member/2]).
:— alias (set, [member/2 as set_member/2]).

(continues on next page)

38 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

member (X, 1) :—
::set_member (X, 1).

:— end_object.

Thus, when sending the message member /2 tomy_data_structure, the predicate definition in set will be used
instead of the one contained in 1ist.

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

:— info (Name/Arity, List).

The second argument is a list of Key is Value terms. See the Documenting applications section for details.

Multifile directive

A predicate can be declared multifile by using the multifile/I directive:

:— multifile (Name/Arity) .

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that should be
used with care. Support for this directive have been added to Logtalk primarily to support migration of Prolog module
code. Spreading clauses for a predicate among several Logtalk entities can be handy in some cases but can also make
your code difficult to understand. Logtalk precludes using a multifile predicate for breaking object encapsulation by
checking that the object (or category) declaring the predicate (using a scope directive) defines it also as multifile. This
entity is said to contain the primary declaration for the multifile predicate. In addition, note that the multifile/1
directive is mandatory when defining multifile predicates.

Consider the following simple example:

:— object (main) .

:— public(a/l).
:— multifile(a/1).
a(l).

:— end_object.

After compiling and loading the main object, we can define other objects (or categories) that contribute with clauses
for the multifile predicate. For example:

:— object (other) .

:— multifile (main::a/1).
main::a(2) .

main::a (X)) :-
b (X) .

b (3)

b (4)

(continues on next page)

1.7. Predicates 39

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

:— end_object.

After compiling and loading the above objects, you can use queries such as:

| ?- main::a(X).

oo~

~

Sw N -
~

Entities containing primary multifile predicate declarations must always be compiled before entities defining clauses
for those multifile predicates. The Logtalk compiler will print a warning if the scope directive is missing.

Multifile predicates may also be declared dynamic using the same Entity: :Name/Arity notation (multifile pred-
icates are static by default).

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or category
defining the clause. This allows clauses for multifile predicates to call local object or category predicates. But the
values of the sender, this, and self in the implicit execution context are passed from the clause head to the clause body.
This is necessary to ensure that these values are always valid and to allow multifile predicate clauses to be defined
in categories. A call to the parameter/2 execution context methods, however, retrieves parameters of the entity
defining the clause, not from the entity for which the clause is defined. The parameters of the entity for which the
clause is defined can be accessed by simple unification at the clause head.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the object own
database instead of the database of the entity holding the multifile predicate primary declaration. Similarly, local
calls to the expand_term/2 and expand_goal/2 methods from a multifile predicate clause look for clauses of
the term_expansion/2 and goal_expansion/2 hook predicates starting from the entity defining the clause
instead of the entity holding the multifile predicate primary declaration. Local calls to the current_predicate/
1,predicate_property/2, and current_op/3 methods from multifile predicate clauses defined in an object
also lookup predicates and their properties in the object own database instead of the database of the entity holding the
multifile predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the coinductive/I directive. For example:

:— coinductive (comember/2) .

Logtalk support for coinductive predicates is experimental and requires a backend Prolog compiler with minimal
support for cyclic terms.

1.7.3 Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have four more
control structures (the three message sending operators plus the external call operator) to play with. For example, if
we wish to define an object containing common utility list predicates like append/2 or member/2 we could write
something like:

40 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

:— object (list).

:— public (append/3) .
:— public (member/2) .

append([], L, L).

append ([H| T], L, [H] T2]) :-
append (T, L, T2).

member (H, [H| _1).

member (H, [_| T]) :—

member (H, T).

:— end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have written is
also valid Prolog code. Calls in a predicate definition body default to the local predicates, unless we use the message
sending operators or the external call operator. This enables easy conversion from Prolog code to Logtalk objects: we
just need to add the necessary encapsulation and scope directives to the old code.

Category predicates

Because a category can be imported by multiple objects, dynamic private predicates must be called either in the
context of self, using the message to self control structure, ::/I, or in the context of his (i.e. in the context of the
object importing the category). For example, if we want to define a category implementing variables using destructive
assignment where the variable values are stored in self we could write:

:— category (variable) .

public (get/2) .
public(set/2) .

private (value_/2) .
:— dynamic (value_/2) .

get (Var, Value) :-
::value_ (Var, Value).

set (Var, Value) :-—
:retractall (value_ (Var, _)),
::asserta (value_ (Var, Value).

:— end_category.

In this case, the get /2 and set/2 predicates will always access/update the correct definition, contained in the
object receiving the messages. The alternative, storing the variable values in his, such that each object importing the
category will have its own definition for the value_/2 private predicate is simple: just omit the use of the : : /1
control construct in the code above.

A category can only contain clauses for static predicates. Nevertheless, as the example above illustrates, there are no
restrictions in declaring and calling dynamic predicates from inside a category.

1.7. Predicates a1

The Logtalk Handbook, Release v3.21.0

Meta-predicates

Meta-predicates may be defined inside objects (and categories) as any other predicate. A meta-predicate is declared
using the meta_predicate/I directive as described earlier on this section. When defining a meta-predicate, the argu-
ments in the clause heads corresponding to the meta-arguments must be variables. All meta-arguments are called in
the context of the entity calling the meta-predicate.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition of meta-
predicates that are called with closures instead of goals as long as the definition uses the call/I-N built-in predicate to
call the closure with the additional arguments. For example:

:— public(all_true/2).
:— meta_predicate(all_true(l, =x)).

all_true(, [1).

all_true(Closure, [Arg| Args]) :—
call(Closure, Arg),
all_true(Closure, Args).

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly one extra
argument.

When calling a meta-predicate, a closure can correspond to a user-defined predicate, a built-in predicate, a lambda
expression, or a control construct.

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary predicates
for the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map ([X,Y]>>(Y is 2*X), [1,2,3], Y¥Ys).
Ys = [2,4,06]
yes

In this example, a lambda expression, [X,Y]>> (Y is 2xX), is used as an argument to the map/3 list mapping
predicate, defined in the library object meta, in order to double the elements of a list of integers. Using a lambda
expression avoids writing an auxiliary predicate for the sole purpose of doubling the list elements. The lambda pa-
rameters are represented by the list [X, Y], which is connected to the lambda goal, (Y is 2*X), bythe (>>) /2
operator.

Currying is supported. Le. it is possible to write a lambda expression whose goal is another lambda expression. The
above example can be rewritten as:

| ?— meta::map ([X]>>([Y]>>(Y is 2xX)), [1,2,3], Y¥s).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. I.e. variables that are global to the lambda expression.
For example, using GNU Prolog as the backend compiler, we can write:

| ?— meta::map ({Z2}/[X,Y]>> (Z#=X+Y), [1,2,3]1, Zs).

Z = _#22(3..268435455)
Zs = [_#3(2..268435454),_#66(1..268435453),_#110(0..268435452)]
yes

42 Chapter 1. User Manual

https://en.wikipedia.org/wiki/Lambda_calculus

The Logtalk Handbook, Release v3.21.0

The ISO Prolog construct {} /1 for representing the lambda free variables as this representation is often associated
with set representation. Note that the order of the free variables is of no consequence (on the other hand, a list is used
for the lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example by Markus
Triska:

| ?- meta::map([A-B,B-A]>>true, [l-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic queries as in the following example using SWI-
Prolog as the backend compiler and Markus Triska’s CLP(FD) library:

| ?— meta::map ({Z2}/[X,Y]>> (clpfd: (Z#=X+Y)), Xs, Ys).
Xs = [1,

Ys = [] ;

Xs = [_G1369],

Ys = [_G1378],
_G1369+_G1378#=72 ;

Xs = [_G1579, _G1582],

Ys = [_G1591, _G1594],
_G1582+_G15944%=7,
_G1579+_G1591#=272 ;

Xs = [_G1789, _G1792, _G1795],
Ys = [_G1804, _G1807, _G18107,
_G1795+_G1810#=27,
_G1792+_G1807#=27,
_G1789+_G1804#=2 ;

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct { } /1 and the standard
operators (/) /2 and (>>) /2, thus avoiding defining new operators, which is always tricky for a portable system
such as Logtalk. The operator (>>) /2 was chosen as it suggests an arrow, similar to the syntax used in other
languages such as OCaml and Haskell to connect lambda parameters with lambda functions. This syntax was also
chosen in order to simplify parsing, error checking, and compilation of lambda expressions. The full specification of
the lambda expression syntax can be found in the Lambda expressions section of the language grammar.

The compiler checks whenever possible that all variables in a lambda expression are either classified as free variables
or as lambda parameters. Non-classified variables in a lambda expression should be regarded as a programming error.
Unfortunately, the dynamic features of the language and lack of sufficient information at compile time may prevent
the compiler of checking all uses of lambda expressions. The compiler also checks if a variable is classified as both
a free variable and a lambda parameter. An optimizing meta-predicate and lambda expression compiler, based on the
term-expansion mechanism, is provided for practical performance by the standard library.

Definite clause grammar rules

Definite clause grammar rules provide a convenient notation to represent the rewrite rules common of most grammars
in Prolog. In Logtalk, definite clause grammar rules can be encapsulated in objects and categories. Currently, the
ISO/TEC WGL17 group is working on a draft specification for a definite clause grammars Prolog standard. Therefore,
in the mean time, Logtalk follows the common practice of Prolog compilers supporting definite clause grammars,
extending it to support calling grammar rules contained in categories and objects. A common example of a definite
clause grammar is the definition of a set of rules for parsing simple arithmetic expressions:

:— object (calculator) .

(continues on next page)

1.7. Predicates 43

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

:— public (parse/2) .

parse (Expression, Value) :—

phrase (expr (Value), Expression).
expr (Z2) ——> term(X), "+", expr(Y), {Z is X + VY}.
expr (Z2) ——> term(xX), "-", expr(Y), {Z is X - Y}.
expr (X) ——> term(X).
term(Z2) ——> number (X)), "x", term(Y), {Z is X x Y}.
term (%) ——> number(xX), "/", term(Y), {72 is X / Y}.
term(Z) ——> number (7).
number (C) ——> "+", number (C) .
number (C) ——> "-", number (X), {C is —-X}.
number (X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:— end_object.

The predicate phrase/2 called in the definition of predicate parse/2 above is a Logtalk built-in method, similar to the
predicate with the same name found on most Prolog compilers that support definite clause grammars. After compiling
and loading this object, we can test the grammar rules with calls such as the following one:

| ?- calculator::parse("1+2-3x4", Result).

Result = -9
yes

In most cases, the predicates resulting from the translation of the grammar rules to regular clauses are not declared.
Instead, these predicates are usually called by using the built-in methods phrase/2 and phrase/3 as shown in the
example above. When we want to use the built-in methods phrase/2 and phrase/3, the non-terminal used as
first argument must be within the scope of the sender. For the above example, assuming that we want the predicate
corresponding to the expr//1 non-terminal to be public, the corresponding scope directive would be:

:— public (expr//1).

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule non-
terminal, not to a predicate. The idea is that the predicate corresponding to the translation of the expr//1 non-
terminal will have a number of arguments equal to one plus the number of additional arguments necessary for process-
ing the implicit difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from categories,
or contained in other objects. This is accomplished by using non-terminals as messages. Using a non-terminal as a
message to self allows us to call grammar rules in categories and ancestor objects. To call grammar rules encapsulated
in other objects, we use a non-terminal as a message to those objects. Consider the following example, containing
grammar rules for parsing natural language sentences:

:— object (sentence,
imports (determiners, nouns, verbs)).

:— public(parse/2) .
parse (List, true) :-—

phrase (sentence, List).
parse(_, false).

(continues on next page)

44 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

sentence —-> noun_phrase, verb_phrase.
noun_phrase --> ::determiner, ::noun.
noun_phrase ——> ::noun.

verb_phrase ——> ::verb.

verb_phrase —-—> ::verb, noun_phrase.

:— end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners, nouns, and
verbs. For example:

:— category (determiners) .
:— private (determiner//0) .

determiner ——> [the].
determiner ——> [a].

:— end_category.

Along with the message sending operators (: : /1, : : /2, and ~* /1), we may also use other control constructs such
as \+/1,!/0,;/2,->/2,and {}/1 in the body of a grammar. In addition, grammar rules may contain meta-calls
(a variable taking the place of a non-terminal), which are translated to calls of the built-in method phrase/3.

You may have noticed that Logtalk defines {//] as a control construct for bypassing the compiler when compiling a
clause body goal. As exemplified above, this is the same control construct that is used in grammar rules for bypassing
the expansion of rule body goals when a rule is converted into a clause. Both control constructs can be combined in
order to call a goal from a grammar rule body, while bypassing at the same time the Logtalk compiler. Consider the
following example:

bar :—

write('bar predicate called'), nl.
:— object (bypass) .

:— public (foo//0).

foo ——> {{bar}}.

:— end_object.

After compiling and loading this code, we may try the following query:

| ?—- logtalk << phrase (bypass::foo, _, _).

bar predicate called
yes

This is the expected result as the expansion of the grammar rule into a clause leaves the {bar} goal untouched, which,
in turn, is converted into the goal bar when the clause is compiled.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using the same
Name//Arity notation illustrated above for the scope directives. In addition, grammar rule non-terminals can be
documented using the info/2 directive, as in the following example:

1.7. Predicates 45

The Logtalk Handbook, Release v3.21.0

:— public (sentence//0) .

:— info (sentence//0, [
comment is 'Rewrites sentence into noun and verb phrases.']).

1.7.4 Built-in object predicates (methods)

Logtalk defines a set of built-in object predicates or methods to access message execution context, to find sets of
solutions, to inspect objects, for database handling, for term and goal expansion, and for printing messages. Similar to
Prolog built-in predicates, these built-in methods should not be redefined.

Execution context methods

Logtalk defines five built-in private methods to access an object execution context. These methods are in the common
usage scenarios translated to a single unification performed at compile time with a clause head context argument.
Therefore, they can be freely used without worrying about performance penalties. When called from inside a category,
these methods refer to the execution context of the object importing the category. These methods are private and
cannot be used as messages to objects.

To find the object that received the message under execution we may use the self// method. We may also retrieve the
object that has sent the message under execution using the sender/I method.

The method this/I enables us to retrieve the name of the object for which the predicate clause whose body is being
executed is defined instead of using the name directly. This helps to avoid breaking the code if we decide to change
the object name and forget to change the name references. This method may also be used from within a category. In
this case, the method returns the object importing the category on whose behalf the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:— object (test).
:— public (test/0).

test -
this(This),
write('Calling predicate definition in '),
writeq(This), nl,
self (Self),
write('to answer a message received by '),

writeq(Self), nl,
sender (Sender),
write ('that was sent by '),
writeq(Sender), nl, nl.
:— end_object.

:— object (descendant,
extends (test)) .

:— end_object.

After compiling and loading these two objects, we can try the following goal:

46 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

| ?- descendant::test.

Calling predicate definition in test

to answer a message received by descendant
that was sent by user

yes

Note that the goals self (Self), sender (Sender),and this (This), being translated to unifications with the
clause head context arguments at compile time, are effectively removed from the clause body. Therefore, a clause such
as:

]

predicate (Arg
self (Self),
atom(Arqg),

is compiled with the goal atom (Arg) as the first condition on the clause body. As such, the use of these context
execution methods do not interfere with the optimizations that some Prolog compilers perform when the first clause
body condition is a call to a built-in type-test predicate or a comparison operator.

For parametric objects and categories, the method parameter/2 enables us to retrieve current parameter values (see the
section on parametric objects for a detailed description). For example:

:— object (block(Color)).
:— public(test/0).
test :-—
parameter (1, Color),
write('Color parameter value is '),

writeq(Color), nl.

:— end_object.

An alternative to the parameter/2 predicate is to use parameter variables:

:— object (block (Color)).
:— public (test/0) .
test -
write('Color parameter value is '),

writeq(Color_), nl.

:— end_object.

After compiling and loading either version of the object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile time unification when the second argument is a
variable. When the second argument is bound, the calls are translated to a call to the built-in predicate arg/ 3.

When type-checking predicate arguments, it is often useful to include the predicate execution context when reporting
an argument error. The context/] method provides access to that context. For example, assume a predicate foo/ 2 that

1.7. Predicates a7

objects.html#objects_parametric

The Logtalk Handbook, Release v3.21.0

takes an atom and an integer as arguments. We could type-check the arguments by writing (using the library type
object):

foo (A, N) :—

typ

context (Context),
type: :check (atom, A, Context),
type: :check (integer, N, >

ntao Aare f1

Error handling and throwing methods

Besides the carch/3 and throw/I methods inherited from Prolog, Logtalk also provides a set of convenience
methods to throw standard error/2 exception terms: instantiation_error/0, type_error/2, domain_error/2, exis-
tence_error/2, permission_error/3, representation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, and
system_error/0.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog predicates:
abolish/1, asserta/l, assertz/1, clause/2, retract/l, and retractall/I. These methods always operate on the database of
the object receiving the corresponding message.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_term/2 convert a
grammar rule into a clause that can then be used with the database methods.

Meta-call methods

Logtalk supports the generalized call/I-N meta-predicate. This built-in private meta-predicate must be used in the
implementation of meta-predicates which work with closures instead of goals. In addition, Logtalk supports the built-
in private meta-predicates ignore/l, once/l, and \+/1. These methods cannot be used as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4, and setof/3.
There is also a forall/2 method that implements generate and test loops. These methods cannot be used as messages
to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities and pred-
icates. Some of the information, however, requires that the source files are compiled with the source_data flag tarned
on.

The reflection API supports two different views on entities and their contents, which we may call the transparent box
view and the black box view. In the transparent box view, we look into an entity disregarding how it will be used
and returning all information available on it, including predicate declarations and predicate definitions. This view is
supported by the entity property built-in predicates. In the black box view, we look into an entity from a usage point-
of-view using built-in methods for inspecting object operators and predicates that are within scope from where we are
making the call: current_op/3, which returns operator specifications, predicate_property/2, which returns predicate

48 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

properties, and current_predicate/I, which enables us to query about predicate definitions. See below for a more
detailed description of these methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with definitions
similar to the predicates with the same name found on most Prolog compilers that support definite clause grammars.
These methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//I-N, and eos//0 built-in non-terminals. The call//1-N non-terminals takes a
closure (which can be a lambda expression) plus zero or more additional arguments and are processed by appending
the input list of tokens and the list of remaining tokens to the arguments.

Term and goal expansion methods

Logtalk supports an expand_term/2 built-in method for expanding a term into another term or a list of terms. This
method is mainly used to translate grammar rules into Prolog clauses. It can be customized, e.g. for bypassing the
default Logtalk grammar rule translator, by defining clauses for the rerm_expansion/2 hook predicate. Logtalk also
supports an expand_goal/2 built-in method for expanding a goal. This method can also be customized by defining
clauses for the goal_expansion/2 hook predicate.

Term and goal expansion may be performed either by calling the expand_term/2 and expand_goal/2 built-in
methods explicitly or by using hook objects. A hook object is simply an object defining clauses for the term- and
goal-expansion hook predicates. To compile a source file using a hook object for expanding its terms and goals, you
can use the ook compiler flag in the second argument of the logralk_compile/2 or logtalk_load/2 built-in predicates.
In alternative, you can use a set_logtalk_flag/2 directive in the source file itself. When compiling a source file, the
compiler will first try the source file specific hook object, if defined. If that fails, it tries the default hook object, if
defined. If that also fails, the compiler tries the Prolog dialect specific expansion predicate definitions if defined in the
adapter file.

Sometimes we have multiple hook objects that we need to use in the compilation of a source file. The Logtalk library
includes support for two basic expansion workflows: a pipeline of hook objects, where the expansion results from a
hook object are feed to the next hook object in the pipeline, and a set of hook objects, where expansions are tried until
one of is found that succeeds. These workflows are implemented as parametric objects allowing combining them to
implement more sophisticated expansion workflows.

Clauses for the term_expansion/2 and goal_expansion/2 predicates defined within an object or a cate-
gory are never used in the compilation of the object or the category itself, however. In order to use clauses for the
term_expansion/2 and goal_expansion/2 predicates defined in plain Prolog, simply specify the pseudo-
object user as the hook object when compiling source files. When using backend Prolog compilers that support
a module system, it can also be specified a module containing clauses for the expanding predicates as long as the
module name doesn’t coincide with an object name. But note that Prolog module libraries may provide definitions of
the expansion predicates that are not compatible with the Logtalk compiler. Specially when setting the hook object to
user, be aware of any Prolog library that is loaded, possibly by default or implicitly by the Prolog system, that may
be contributing definitions of the expansion predicates. It is usually much safer to define a specific hook object for
combining multiple expansions in a fully controlled way.

Logtalk provides a logtalk_load_context/2 built-in predicate that can be used to access the compilation/loading context
when performing term-expansion or goal-expansion.

Printing messages

Logtalk features a structured message printing mechanism. This mechanism gives the programmer full control of
message printing, allowing it to filter, rewrite, or redirect any message. The origins of the message printing mechanism

1.7. Predicates 49

The Logtalk Handbook, Release v3.21.0

that inspired the Logtalk implementation goes back to Quintus Prolog, where it was apparently implemented by Dave
Bowen (thanks to Richard O’Keefe for the historical bits). Variations of this mechanism can also be found currently
on e.g. SICStus Prolog, SWI-Prolog, and YAP.

Why a mechanism for printing messages? Consider the different components in a Logtalk application development
and execution. At the bottom level, you have the Logtalk compiler and runtime. The Logtalk compiler writes messages
related to e.g. compiling and loading files, compiling entities, compilation warnings and errors. The Logtalk runtime
may write banner messages and handles execution errors that may result in printing human-level messages. The
development environment can be console-based or you may be using a GUI tool such as PDT. In the latter case, PDT
needs to intercept the Logtalk compiler and runtime messages to present the relevant information using its GUI. Then
you have all the other components in a typical application. For example, your own libraries and third-party libraries.
The libraries may want to print messages on its own, e.g. banners, debugging information, or logging information.
As you assemble all your application components, you want to have the final word on which messages are printed,
where, an in what conditions. Uncontrolled message printing by libraries could potentially e.g. disturb application
flow, expose implementation details, spam the user with irrelevant details, or break user interfaces.

The Logtalk message printing mechanism provides you with a set of predicates, defined in the logtalk built-in object,
and some hook predicates. Two of the most important predicates are print_message(Kind, Component, Term), which is
used for printing a message, and message_hook(Term, Kind, Component, Tokens), a user-defined hook predicate used
for intercepting messages. The Kind argument is used to represent the nature of the message being printed. It can
be e.g. a logging message, a warning message or an error message, In Logtalk this argument can be either an atom,
e.g. error, or a compound term, e.g. comment (loading). Using a compound term allows easy partitioning of
messages of the same kind in different groups. The following kinds of message are recognized by default:

banner banner messages (used e.g. when loading tools or main application components; can be suppressed by
setting the report flag to warnings or of f)

help messages printed in reply for the user asking for help (mostly for helping port existing Prolog code)
information and information (Group) messages usually printed in reply to a user request for information

silent and silent (Group) not printed by default (but can be intercepted using the message_hook/4 pred-
icate)

comment and comment (Group) useful but usually not essential messages (can be suppressed by setting the re-
port flag to warnings or of f)

warning and warning (Group) warning messages (generated e.g. by the compiler; can be suppressed by turning
off the report flag)

error and error (Group) error messages (generated e.g. by the compiler)

Note that you can define your own alternative message kind identifiers, for your own components, together with
suitable definitions for their associated prefixes and output streams.

Messages are represented by atoms or compound terms, handy for machine-processing, and converted into a list of
tokens, for human consumption. This conversion is performed using the multifile non-terminal message_tokens(Term,
Component). A simple example is:

:— multifile (logtalk::message_tokens//2).
:— dynamic (logtalk::message_tokens//2).

logtalk: :message_tokens (loaded_settings_file (Path), core) ——>
['Loaded settings file found on directory ~w'—-[Path], nl, nl].

The Component argument is new in the Logtalk implementation and is useful to filter messages belonging to a
specific component (e.g. the Logtalk compiler and runtime is identified by the atom core) and also to avoid conflicts
when two components define the same message term (e.g. banner).

The following tokens can be used when translating a message:

50 Chapter 1. User Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

at_same_1line Signals afollowing part to a multi-part message with no line break in between; this token is ignored
when it’s not the first in the list of tokens

flush Flush the output stream (by calling the f1ush_output /1 standard predicate)
nl Change line in the output stream

Format-Arguments Format must be an atom and Arguments must be a list of format arguments (the token
arguments are passed to a call to the format /3 de facto standard predicate)

term(Term, Options) Term can be any term and Options must be a list of valid write_term/3 output
options (the token arguments are passed to a call to the write_term/3 standard predicate)

ansi (Attributes, Format, Arguments) Taken from SWI-Prolog; by default, do nothing; can be used for
styled output

begin (Kind, Var) Taken from SWI-Prolog; by default, do nothing; can be used together with end (Var) to
wrap a sequence of message tokens

end (Var) Taken from SWI-Prolog; by default, do nothing

There are also predicates for printing a list of tokens, print_message_tokens(Stream, Prefix, Tokens), for hooking
into printing an individual token, print_message_token(Stream, Prefix, Token, Tokens), and for setting default output
stream and message prefixes, message_prefix_stream(Kind, Component, Prefix, Stream). For example, the SWI-Prolog
adapter file uses the print_message_token/4 hook predicate to enable coloring of messages printed on a con-
sole.

Using the message printing mechanism in your applications and libraries is easy. Simply chose a unique component
name for your application (e.g. the name of the application itself), call logtalk: :print_message/3 for every
message that you may want to print, and define default translations for your message terms using the multifile non-
terminal logtalk: :message_tokens/2. For a full programming example, see e.g. the 1gtunit tool source
code.

Asking questions

Logtalk features a structured question asking mechanism that complements the message printing mechanism. This
feature provides an abstraction for the common task of asking a user a question and reading back its reply. By default,
this mechanism writes the question, writes a prompt, and reads the answer from the current user input and output
streams but allows both steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are using a
GUI dialog for asking questions and automatically providing answers to specific questions.

The question asking mechanism works in tandem with the message printing mechanism, using it to print the question
text and a prompt. It provides an asking predicate and a hook predicate, both declared and defined in the logtalk
built-in object. The asking predicate, ask_question(Kind, Component, Question, Check, Answer), is used for ask a
question and read the answer. The hook predicate, question_hook(Question, Kind, Component, Tokens, Check, An-
swer), is used for intercepting questions. The Kind argument is used to represent the nature of the question being
asked. Its default value is question but it can be any atom or compound term, e.g. question (parameters).
Using a compound term allows easy partitioning of messages of the same kind in different groups. The Check argu-
ment is a closure that is converted into a checking goal taking as argument the user answer. The ask_question/5
implements a read loop that terminates when this checking predicate is true. The question itself is a term that is
translated into printing tokens using the message_tokens/2 multifile predicate described above.

There is also a wuser-defined multifile predicate for setting default prompt and input streams,
question_prompt_stream(Kind, Component, Prompt, Stream) question_prompt_stream/4.

A usage example of this mechanism can be found in the debugger tool where it’s used to abstract the user interaction
when tracing a goal execution in debug mode.

1.7. Predicates 51

The Logtalk Handbook, Release v3.21.0

1.7.5 Predicate properties

We can find the properties of visible predicates by calling the predicate_property/2 built-in method. For example:

| ?- bar::predicate_property (foo(_), Property).

Note that this method respects the predicate’s scope declarations. For instance, the above call will only return proper-
ties for public predicates.

An object’s set of visible predicates is the union of all the predicates declared for the object with all the built-in
methods and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope (Scope) The predicate scope (useful for finding the predicate scope with a single call to
predicate_property/2)

public, protected, private The predicate scope (useful for testing if a predicate have a specific scope)

static, dynamic All predicates are either static or dynamic (note, however, that a dynamic predicate can only be
abolished if it was dynamically declared)

logtalk, prolog, foreign A predicate can be defined in Logtalk source code, Prolog code, or in foreign code
(e.g. in C)

built_in The predicate is a built-in predicate

multifile The predicate is declared multifile (i.e. it can have clauses defined in several entities)
meta_predicate (Template) The predicate is declared as a meta-predicate with the specified template
coinductive (Template) The predicate is declared as a coinductive predicate with the specified template
declared in (Entity) The predicate is declared (using a scope directive) in the specified entity

defined_in (Entity) The predicate definition is looked up in the specified entity (note that this property does
not necessarily imply that clauses for the predicate exist in Ent ity; the predicate can simply be false as per
the closed-world assumption)

redefined_ from(Entity) The predicate is a redefinition of a predicate definition inherited from the specified
entity

non_terminal (NonTerminal//Arity) The predicate resulted from the compilation of the specified grammar
rule non-terminal

alias_of (Predicate) The predicate (name) is an alias for the specified predicate
alias_declared_in(Entity) The predicate alias is declared in the specified entity

synchronized The predicate is declared as synchronized (i.e. it’s a deterministic predicate synchronized using a
mutex when using a backend Prolog compiler supporting a compatible multi-threading implementation)

Some properties are only available when the entities are defined in source files and when those source files are compiled
with the source_data flag turned on:

inline The predicate definition is inlined

auxiliary The predicate is not user-defined but rather automatically generated by the compiler or the term-
expansion mechanism

mode (Mode, Solutions) Instantiation, type, and determinism mode for the predicate (which can have multiple
modes)

info (ListOfPairs) Documentation key-value pairs as specified in the user-defined info/2 directive

52 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

number_of_clauses (N) The number of clauses for the predicate existing at compilation time (note that this
property is not updated at runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules (N) The number of rules for the predicate existing at compilation time (note that this property
is not updated at runtime when asserting and retracting clauses for dynamic predicates)

declared_in (Entity, Line) The predicate is declared (using a scope directive) in the specified entity in a
source file at the specified line (if applicable)

defined_in (Entity, Line) The predicate is defined in the specified entity in a source file at the specified line
(if applicable)

redefined_from(Entity, Line) The predicate is a redefinition of a predicate definition inherited from the
specified entity, which is defined in a source file at the specified line (if applicable)

alias_declared_in(Entity, Line) The predicate alias is declared in the specified entity in a source file at
the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in
methods and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by the
object, it will be the category name — not the object name — that will be returned by the property declared_in/1.
The same is true for protocol declared predicates.

1.7.6 Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current_predicate/I built-in method. This
method respects the predicate’s scope declarations. For instance, the following call:

| ?- some_object::current_predicate (Name/Arity) .

will only return user predicates that are declared public. The predicate property non_terminal/1 may be used to
retrieve all grammar rule non-terminals declared for an object. For example:

current_non_terminal (Object, Name//Args) :-—
Object::current_predicate (Name/Arity),
functor (Predicate, Functor, Arity),
Object: :predicate_property (Predicate, non_terminal (Name//Args)) .

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely on this
always being true.

1.7.7 Calling Prolog built-in predicates

In predicate definitions, predicate calls which are not prefixed with a message sending or super call operator (: : or
~), are compiled to either calls to local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is
compiled as a call to a local predicate if the object (or category) contains a scope directive, a definition for the called
predicate, or a dynamic declaration for it. When the object (or category) does not contain either a definition of the
called predicate or a corresponding dynamic declaration, Logtalk tests if the call corresponds to a Logtalk or Prolog
built-in predicate. Calling a predicate which is neither a local predicate nor a Logtalk/Prolog built-in predicate results
in a compile time warning. This means that, in the following example:

foo :-
.7
write (bar),

1.7. Predicates 53

The Logtalk Handbook, Release v3.21.0

the call to the predicate write/1 will be compiled as a call to the corresponding Prolog built-in predicate unless
the object (or category) encapsulating the above definition also contains a predicate named write/1 or a dynamic
declaration for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, you may
run into portability problems while trying your applications with different backend Prolog compilers (non-standard
predicates and non-standard arithmetic functions are often specific to a Prolog compiler). You may use the Logtalk
portability compiler flag to help check for problematic calls in your code.

Calling Prolog non-standard meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be used as
messages. Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however, as there is no
standard way of checking if a built-in predicate is also a meta-predicate and finding out which are its meta-arguments.
But Logtalk supports override the original meta-predicate template if not programmatically available or usable. For
example, assume a det_call/1 Prolog built-in meta-predicate that takes a goal as argument. We can add to the
object (or category) calling it the directive:

’ :— meta_predicate (user:det_call(0)) .

Another solution is to explicitly declare all non-standard Prolog meta-predicates in the corresponding adapter file using
the internal predicate ' $1gt_prolog_meta_predicate'/3. For example:

"$lgtfprologfmetafpredicate'(det_call(f), det_call(0), predicate).

The third argument can be either the atom predicate or the atom control_construct, a distinction that is
useful when compiling in debug mode.

1.7.8 Calling Prolog user-defined predicates
Prolog user-defined predicates are not visible from within objects or categories. Notably, this ensures that the com-

pilation of Logtalk entities is not affected by any plain Prolog definitions that happen to be loaded at the time of
compilation.

Calling plain Prolog predicates

Prolog user-defined plain predicates can be called from within objects or categories by using the {}// compiler bypass
control construct. For example:

foo :-

.7

{bar},

In alternative, you can also use the uses/2 directive and write:

:— uses (user, [bar/0]).

foo :-

bar,

54 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated (either in a
Logtalk entity or a Prolog module).

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by using explicit qualification. For example:

foo :-
.7
module:bar,

You can also use in alternative the use_module/2 directive to call the module predicates using implicit qualification:

:— use_module (module, [bar/0]).

foo :-

bar,

Note that the first argument of the use_module/2, when used within an object or a category, is a module name, not
a file name.

Warning: The actual module code should be loaded prior to compilation of Logtalk that uses it. In particular,
programmers should not expect that the module be auto-loaded (when using backend Prolog compilers supporting
an autoloading mechanism).

Calls to module meta-predicates may require providing a missing meta-predicate template or overriding an existing
meta-predicate template due to lack of standardization as discussed earlier in this section.

1.8 Inheritance

The inheritance mechanisms found on object-oriented programming languages allow us the specialization of previ-
ously defined objects, avoiding the unnecessary repetition of code and allowing the definition of common predicates
for sets of objects. In the context of logic programming, we can interpret inheritance as a form of theory extension:
an object will virtually contain, besides its own predicates, all the predicates inherited from other objects that are not
redefined by itself.

Logtalk uses a depth-first lookup procedure for finding predicate declarations and predicate definitions, as explained
below. The lookup procedures locate the entities holding the predicate declaration and the predicate definition using,
respectively, the predicate indicator and the predicate template (constructed from the predicate indicator). The alias/2
predicate directive may be used to defining alternative names for inherited predicates, for solving inheritance conflicts,
and for giving access to all inherited definitions (thus overriding the default lookup procedure).

1.8.1 Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be contained
in objects, in protocols, or in categories. Logtalk supports single and multi-inheritance of protocols: an object or a
category may implement several protocols and a protocol may extend several protocols.

1.8. Inheritance 55

The Logtalk Handbook, Release v3.21.0

Search order for prototype hierarchies

The search order for predicate declarations is first the object, second the implemented protocols (and the protocols that
these may extend), third the imported categories (and the protocols that they may implement), and last the objects that
the object extends. This search is performed in depth-first order. When an object inherits two different declarations
for the same predicate, by default, only the first one will be considered.

Search order for class hierarchies

The search order for predicate declarations starts in the object classes. Following the classes declaration order, the
search starts in the classes implemented protocols (and the protocols that these may extend), third the classes imported
categories (and the protocols that they may implement), and last the superclasses of the object classes. This search is
performed in depth-first order. If the object inherits two different declarations for the same predicate, by default only
the first one will be considered.

1.8.2 Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in objects or in
categories. Logtalk supports multi-inheritance of implementation: an object may import several categories or extend,
specialize, or instantiate several objects.

Search order for prototype hierarchies

The search order for predicate definitions is similar to the search for predicate declarations except that implemented
protocols are ignored (as they can only contain predicate directives).

Search order for class hierarchies

The search order for predicate definitions is similar to the search for predicate declarations except that implemented
protocols are ignored (as they can only contain predicate directives) and that the search starts at the instance itself (that
received the message) before proceeding, if no predicate definition is found there, to the instance classes and then to
the class superclasses.

Redefining inherited predicate definitions

When we define a predicate that is already inherited from other object, the inherited definitions are hidden by the new
definitions. This is called overriding inheritance: a local definition overrides any inherited definitions. For example,
assume that we have the following two objects:

:— object (root) .

:— public (bar/1).
bar (root) .

:— public(foo/1).
foo (root) .

:— end_object.

:— object (descendant,

(continues on next page)

56 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

extends (root)) .

foo (descendant) .

:— end_object.

After compiling and loading these objects, we can check the overriding behavior by trying the following queries:

| ?- root::(bar(Bar), foo(Foo)).

Bar = root

Foo = root

yes

| ?- descendant:: (bar (Bar), foo (Foo)).
Bar = root

Foo = descendant

yes

However, we can explicitly code other behaviors. Some examples follow.

Specializing inherited predicate definitions

Specialization of inherited definitions: the new definition uses the inherited definitions, adding new code. This is
accomplished by calling the /] operator in the new definition. For example, assume a init /0 predicate that must
account for object specific initializations along the inheritance chain:

:— object (root) .
:— public (init/0).

init :-
write ('root init'), nl.

:— end_object.
:— object (descendant,
extends (root)) .
init :-
write ('descendant init'), nl,
AMhinit.

:— end_object.

| ?- descendant::init.

descendant init
root init

yes

1.8. Inheritance 57

The Logtalk Handbook, Release v3.21.0

Union of inherited and local predicate definitions

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order being
defined by the inheritance mechanisms. This can be accomplished by writing a clause that just calls, using the "Y1/
operator, the inherited definitions. The relative position of this clause among the other definition clauses sets the
calling order for the local and inherited definitions. For example:

:— object (root) .
:— public(foo/1).

foo(l).
foo(2) .

:— end_object.

:— object (descendant,
extends (root)) .
foo(3).
foo (Foo) :—

~“~foo (Foo) .

:— end_object.

| ?- descendant::foo (Foo).

Selective inheritance of predicate definitions

The selective inheritance of predicate definitions (also known as differential inheritance) is normally used in the rep-
resentation of exceptions to inherited default definitions. We can use the **Y// operator to test and possibly reject some
of the inherited definitions. A common example is representing flightless birds:

:— object (bird) .
:— public (mode/1) .

mode (walks) .
mode (flies) .

:— end_object.

:— object (penguin,
extends (bird)) .
mode (swims) .

mode (Mode) :—
~“mode (Mode) ,

(continues on next page)

58 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

Mode \= flies.

:— end_object.

| ?- penguin::mode (Mode) .

Mode = swims ;
Mode = walks ;
no

1.8.3 Public, protected, and private inheritance

To make all public predicates declared via implemented protocols, imported categories, or ancestor objects protected
predicates or to make all public and protected predicates private predicates we prefix the entity’s name with the
corresponding keyword. For example:

:— object (Object,
implements (private: :Protocol)) .

:— end_object.

or:

:— object (Class,
specializes (protected: :Superclass)).

:— end_object.

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

:— object (Object,
imports (public::Category)) .

:— end_object.

This is the same as:

:— object (Object,
imports (Category)) .

:— end_object.

1.8. Inheritance 59

The Logtalk Handbook, Release v3.21.0

This way we ensure backward compatibility with older Logtalk versions and a simplified syntax when protected or
private inheritance are not used.

1.8.4 Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless debate on single
versus multiple inheritance. The single inheritance mechanism can be implemented efficiently but it imposes several
limitations on reusing, even if the multiple characteristics we intend to inherit are orthogonal. On the other hand, the
multiple inheritance mechanisms are attractive in their apparent capability of modeling complex situations. However,
they include a potential for conflict between inherited definitions whose variety does not allow a single and satisfactory
solution for all the cases.

Until now, no solution that we might consider satisfactory for all the problems presented by the multiple inheri-
tance mechanisms has been found. From the simplicity of some extensions that use the Prolog search strategy like
[McCabe92] or [Moss94] and to the sophisticated algorithms of CLOS [Bobrow_et_al_88], there is no adequate so-
lution for all the situations. Besides, the use of multiple inheritance carries some complex problems in the domain
of software engineering, particularly in the reuse and maintenance of the applications. All these problems are sub-
stantially reduced if we preferably use in our software development composition mechanisms instead of specialization
mechanisms [Taenzer89]. Multiple inheritance is best used as an analysis and project abstraction, rather than as an
implementation technique [Shan_et_al_93]. Logtalk provides first-class support for software composition using Cat-
egories.

Nevertheless, Logtalk supports multi-inheritance by enabling an object to extend, instantiate, or specialize more than
one object. The alias/2 predicate directive can always be used to solve multi-inheritance conflicts. It should also be
noted that the multi-inheritance support does not affect performance when we use single-inheritance.

1.9 Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura94] is based on a simple but
powerful idea:

The computations must result, not only from message sending, but also from the observation of message
sending.

The need to associate computations to the occurrence of events was very early recognized in knowledge representation
languages, programming languages [Stefik_et_al_86], [Moon86], operative systems [Tanenbaum87], and graphical
user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the following goals:

* Minimize the coupling between objects. An object should only contain what is intrinsic to it. If an object
observes another object, that means that it should depend only on the public protocol of the object observed and
not on the implementation of that protocol.

* Provide a mechanism for building reflexive systems in Logtalk based on the dynamic behavior of objects in
complement to the reflective information on object predicates and relations.

¢ Provide a mechanism for easily defining method pre- and post-conditions that can be toggled using the events
compiler flag. The pre- and post-conditions may be defined in the same object containing the methods or
distributed between several objects acting as method monitors.

1.9.1 Definitions

The words event and monitor have multiple meanings in computer science. To avoid misunderstandings, we start by
defining them in the Logtalk context.

60 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural to declare
that the only event that can occur in this kind of system is precisely the sending of a message. An event can thus be
represented by the ordered tuple (Object, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the return of
the control to the object that has sent the message as two distinct events. This distinction allows us to have a more
precise control over a system dynamic behavior. In Logtalk, these two types of events have been named before and
after, respectively for sending a message and for returning of control to the sender. Therefore, we refine our event
representation using the ordered tuple (Event, Object, Message, Sender).

The implementation of events in Logtalk enjoys the following properties:

Independence between the two types of events We can choose to watch only one event type or to process each one
of the events associated to a message sending in an independent way.

All events are automatically generated by the message sending mechanism The task of generating events is trans-
parently accomplished by the message sending mechanism. The user only needs to define the events that will
be monitored.

The events watched at any moment can be dynamically changed during program execution The notion of event
allows the user not only to have the possibility of observing, but also of controlling and modifying an application
behavior, namely by dynamically changing the observed events during program execution. It is our goal to
provide the user with the possibility of modeling the largest number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically notified
by the message sending mechanism whenever a registered event occurs. Any object that defines the event-handling
predicates can play the role of a monitor.

The implementation of monitors in Logtalk enjoys the following properties:

Any object can act as a monitor The monitor status is a role that any object can perform during its existence. The
minimum protocol necessary is declared in the built-in monitoring protocol. Strictly speaking, the reference to
this protocol is only needed when specializing event handlers. Nevertheless, it is considered good programming
practice to always refer the protocol when defining event handlers.

Unlimited number of monitors for each event Several monitors can observe the same event because of distinct rea-
sons. Therefore, the number of monitors per event is bounded only by the available computing resources.

The monitor status of an object can be dynamically changed in runtime This property does not imply that an ob-
ject must be dynamic to act as a monitor (the monitor status of an object is not stored in the object).

The execution of actions, defined in a monitor, associated to each event, never affects the term that denotes the message involved
In other words, if the message contains uninstantiated variables, these are not affected by the acting of monitors
associated to the event.

1.9.2 Event generation

For each message that is sent (using the ::/2 control construct) the runtime system automatically generates two events.
The first — before event — is generated when the message is sent. The second — after event — is generated after the
message has successfully been executed.

1.9. Event-driven programming 61

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.21.0

1.9.3 Communicating events to monitors

Whenever a spied event occurs, the message sending mechanism calls the corresponding event handlers directly for
all registered monitors. These calls are internally made bypassing the message sending primitives in order to avoid
potential endless loops. The event handlers consist in user definitions for the public predicates declared in the built-in
monitoring protocol (see below for more details).

1.9.4 Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages. On the other
hand, for each message that has been sent, the system must verify if its respective event is monitored. Whenever
possible, this verification should be performed in constant time and independently of the number of monitored events.
The events representation takes advantage of the first argument indexing performed by most Prolog compilers, which
ensure — in the general case — access in constant time.

Event-support can be turned off on a per-object (or per-category) basis using the events compiler flag. With event-
support turned off, Logtalk uses optimized code for processing message sending calls that skips the checking of
monitored events, resulting in a small but measurable performance improvement.

1.9.5 Monitor semantics

The established semantics for monitors actions consists on considering its success as a necessary condition so that a
message can succeed:

 All actions associated to events of type be fore must succeed, so that the message processing can start.

» All actions associated to events of type after also have to succeed so that the message itself succeeds. The
failure of any action associated to an event of type after forces backtracking over the message execution (the
failure of a monitor never causes backtracking over the preceding monitor actions).

Note that this is the most general choice. If we wish a transparent presence of monitors in a message processing, we
just have to define the monitor actions in such a way that they never fail (which is very simple to accomplish).

1.9.6 Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not interfere with the
result. However, this is not always possible. In the case of an event of type be fore, the failure of a monitor prevents
a message from being sent and prevents the execution of the remaining monitors. In case of an event of type after,
a monitor failure will force backtracking over message execution. Different orders of monitor activation can there-
fore lead to different results if the monitor actions imply object modifications unrecoverable in case of backtracking.
Therefore, the order for monitor activation should be assumed as arbitrary. In effect, to assume or to try to impose a
specific sequence requires a global knowledge of an application dynamics, which is not always possible. Furthermore,
that knowledge can reveal itself as incorrect if there is any changing in the execution conditions. Note that, given the
independence between monitors, it does not make sense that a failure forces backtracking over the actions previously
executed.

1.9.7 Event handling

Logtalk provides three built-in predicates for event handling. These predicates support defining, enumerating, and
abolishing events. Applications that use events extensively usually define a set of objects that use these built-in
predicates to implement more sophisticated and higher-level behavior.

62 Chapter 1. User Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.21.0

Defining new events

New events can be defined using the define_events/5 built-in predicate:

| ?- define_events (Event, Object, Message, Sender, Monitor).

Note that if any of the Event, Object, Message, and Sender arguments is a free variable or contains free
variables, this call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abolish_events/5 built-in predicate:

| ?- abolish_events (Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the current_event/5 built-in predicate:

| ?- current_event (Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some of the returned arguments are free variables or
contain free variables.

Defining event handlers

The monitoring built-in protocol declares two public predicates, before/3 and after/3, that are automatically called to
handle before and after events. Any object that plays the role of monitor must define one or both of these event
handler methods:

before (Object, Message, Sender) :-—

The arguments in both methods are instantiated by the message sending mechanism when a monitored event occurs.
For example, assume that we want to define a monitor called t racer that will track any message sent to an object by
printing a describing text to the standard output. Its definition could be something like:

:— object (tracer,

- rotocc evenct nandadil r metnoas

implements (monitoring)) .

before (Object, Message, Sender) :-
write('call: '), writeq(Object),
write(' <-—- '), writeq(M ge),
write(' from '), writeq(der), nl

after (Object, Message, Sender) :-
write('exit: '), writeq(Ob]

write(' <-- "), writeq(Me:

(continues on next page)

1.9. Event-driven programming 63

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

write(' from '), writeq(Sender), nl.

:— end_object.

Assume that we also have the following object:

:— object (any) .

:— public(bar/1)
:— public(foo/1)

bar (bar) .
foo (foo) .

:— end_object.

After compiling and loading both objects and setting the events to allow flag, we can start tracing every message
sent to any object by calling the define_events/5 built-in predicate:

| ?- set_logtalk_flag(events, allow).

yes

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent to any object will be traced to the standard output stream:

| ?— any::bar (X).

call: any <—- bar(X) from user

exit: any <-- bar(bar) from user
X = bar
yes

To stop tracing, we can use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event handlers as public predicates. If necessary, protected or private implemen-
tation of the protocol may be used in order to change the scope of the event handler predicates. Note that the message
sending processing mechanism is able to call the event handlers irrespective of their scope. Nevertheless, the scope of
the event handlers may be restricted in order to prevent other objects from calling them.

1.10 Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers. Logtalk
makes use of the low-level Prolog built-in predicates that implement message queues and interface with POSIX threads
and mutexes (or a suitable emulation), providing a small set of high-level predicates and directives that allows pro-
grammers to easily take advantage of modern multi-processor and multi-core computers without worrying about the

64 Chapter 1. User Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.21.0

details of creating, synchronizing, or communicating with threads. Logtalk multi-threading programming integrates
with object-oriented programming providing a threaded engines API, enabling objects and categories to prove goals
concurrently, and supporting synchronous and asynchronous messages.

1.10.1 Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of supported com-
pilers by setting the read-only threads compiler flag to supported.

1.10.2 Enabling objects to make multi-threading calls

The threaded/0 object directive is used to enable an object to make multi-threading calls:

:— threaded.

1.10.3 Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where you
simply want to prove a set of goals, each one in its own thread, Logtalk provides a threaded/I built-in predicate. The
remaining predicates allow for fine-grained control, including postponing retrieving of thread goal results at a later
time, supporting non-deterministic thread goals, and making one-way asynchronous calls. Together, these predicates
provide high-level support for multi-threading programming, covering most common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate threaded/I. Each goal in the set
runs in its own thread.

When the threaded/1 predicate argument is a conjunction of goals, the predicate call is akin to and-parallelism.
For example, assume that we want to find all the prime numbers in a given interval, [N, M]. We can split the interval
in two parts and then span two threads to compute the prime numbers in each sub-interval:

prime_numbers (N, M, Primes) :-—

M > N,
Nl is N + (M - N) // 2,
N2 is N1 + 1,
threaded ((
prime_numbers (N2, M, [], Acc),
prime_numbers (N, N1, Acc, Primes)
)) .
prime_numbers (N, M, Acc, Primes) :-—

The threaded/ 1 call terminates when the two implicit threads terminate. In a computer with two or more processors
(or with a processor with two or more cores) the code above can be expected to provide better computation times when
compared with single-threaded code for sufficiently large intervals.

When the threaded/ 1 predicate argument is a disjunction of goals, the predicate call is akin to or-parallelism, here
reinterpreted as a set of goals competing to find a solution. For example, consider the different methods that we can
use to find the roots of real functions. Depending on the function, some methods will faster than others. Some methods
will converge into the solution while others may diverge and never find it. We can try all the methods simultaneously
by writing:

1.10. Multi-threading programming 65

The Logtalk Handbook, Release v3.21.0

find_root (Function, A, B, Error, Zero) :-—
threaded ((
bisection::find_root (Function, A,
; newton: :find_root (Function, A, B,
; muller::find_root (Function, A, B

)) -

The above threaded/1 goal succeeds when one of the implicit threads succeeds in finding the function root, leading
to the termination of all the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy, independent deterministic computations where the
computational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the threaded_call/I-2 built-in predicate . Calls to
this predicate are always true and return immediately (assuming a callable argument). The term representing the goal
is copied, not shared with the thread. The thread computes the first solution to the goal, posts it to the message queue
of the object from where the threaded_call/1 predicate was called, and suspends waiting for either a request for
an alternative solution or for the program to commit to the current solution.

The results of proving a goal asynchronously in a new thread may be later retrieved by calling the threaded_exit/1-
2 built-in predicate within the same object where the call to the threaded_call/1 predicate was made. The
threaded_exit/1 calls suspend execution until the results of the threaded_call/1 calls are sent back to the
object message queue.

The threaded_exit/1 predicate allow us to retrieve alternative solutions through backtracking (if you want to
commit to the first solution, you may use the threaded_once/I-2 predicate instead of the threaded_call/1 predi-
cate). For example, assuming a 1ists object implementing the usual member /2 predicate, we could write:

| ?- threaded_call(lists::member (X, [1,2,3])).

X = _G189
yes

| ?- threaded_exit (lists::member (X, [1,2,3])).

X =1 ;
X =2 ;
X =3 ;
no

In this case, the threaded_call/1 and the threaded_exit/1 calls are made within the pseudo-object user.
The implicit thread running the 1ists: :member/2 goal suspends itself after providing a solution, waiting for a
request to an alternative solution; the thread is automatically terminated when the runtime engine detects that back-
tracking to the threaded_exit /1 call is no longer possible.

Calls to the threaded_exit /1 predicate block the caller until the object message queue receives the reply to the
asynchronous call. The predicate threaded_peek/I-2 may be used to check if a reply is already available without
removing it from the thread queue. The threaded_peek/1 predicate call succeeds or fails immediately without
blocking the caller. However, keep in mind that repeated use of this predicate is equivalent to polling a message queue,
which may severely hurt performance.

Be careful when using the threaded_exit/1 predicate inside failure-driven loops. When all the solutions have
been found (and the thread generating them is therefore terminated), re-calling the predicate will generate an exception.
Note that failing instead of throwing an exception is not an acceptable solution as it could be misinterpreted as a failure
of the threaded_exit /1 argument.

66 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

The example on the previous section with prime numbers could be rewritten using the threaded_call/1 and
threaded_exit/1 predicates:

prime_numbers (N, M, Primes) :-—
M > N,
Nl is N + (M - N) // 2,
N2 is N1 + 1,

threaded_call (prime_numbers (N2, M, [], Acc)),

((N
threaded_call (prime_numbers (N, N1, Acc, Primes)),
threaded_exit (prime_numbers (N2, M, [], Acc)),
threaded_exit (prime_numbers (N, N1, Acc, Primes)).

prime_numbers (N, M, Acc, Primes) :-—

When using asynchronous calls, the link between a threaded_exit/1 call and the corresponding
threaded_call/1 call is established using unification. If there are multiple threaded_call/1 calls for a
matching threaded_exit/1 call, the connection can potentially be established with any of them. Nevertheless,
you can easily use a tag the calls by using the extended threaded_call/l1-2 and threaded_exit/1-2 built-in predicates.
For example:

?- threaded_call (member (X, [1,2,3]), Tag).

Tag =1
yes

?— threaded_call (member (X, [1,2,3]), Tag).

Tag = 2
yes

?— threaded_exit (member (X, [1,2,31), 2).

X=1;
X =2 ;
X =3
yes

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on its type.

1.10.4 One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the results. This may be accomplished by
using the built-in predicate threaded_ignore/I. For example, assume that we are developing a multi-agent application
where an agent may send an “happy birthday” message to another agent. We could write:

., threaded ignore (agent::happy_birthday),

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the object
making the call. Note that this predicate implicitly performs a deterministic call of its argument.

1.10.5 Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side effects such
as input/output operations or modifications to an object database. For example, if a new thread is started with the

1.10. Multi-threading programming 67

The Logtalk Handbook, Release v3.21.0

same goal before the first one finished its job, we may end up with mixed output, a corrupted database, or unexpected
goal failures. In order to solve this problem, predicates (and grammar rule non-terminals) with side effects can be
declared as synchronized by using the synchronized/I predicate directive. Proving a query to a synchronized predicate
(or synchronized non-terminal) is internally protected by a mutex, thus allowing for easy thread synchronization. For
example:

:— synchronized (db_update/1) .

db_update (Update) :—

A second example: assume an object defining two predicates for writing, respectively, even and odd numbers in a
given interval to the standard output. Given a large interval, a goal such as:

| ?- threaded_call (obj::0dd_numbers(1,100)),
threaded_call (obj::even_numbers (1,100)) .

1324685710

will most likely result in a mixed up output. By declaring the odd_numbers/2 and even_numbers/2 predicates
synchronized:

:— synchronized ([
odd_numbers/2,
even_numbers/2]) .

one goal will only start after the other one finished:

| ?- threaded_ignore (obj::odd_numbers(l,99)),
threaded_ignore (obj::even_numbers (1, 99)).

1357911

2 4 68 10 12

Note that, in a more realistic scenario, the two threaded_ignore/1 calls would be made concurrently from
different objects. Using the same synchronized directive for a set of predicates imply that they all use the same mutex,
as required for this example.

As each Logtalk entity is independently compiled, this directive must be included in every object or category that
contains a definition for the described predicate, even if the predicate declaration is inherited from another entity, in
order to ensure proper compilation. Note that a synchronized predicate cannot be declared dynamic. To ensure atomic
updates of a dynamic predicate, declare as synchronized the predicate performing the update.

Synchronized predicates may be used as wrappers to messages sent to objects that are not multi-threading aware.
For example, assume a random object defining a random/ 1 predicate that generates random numbers, using side
effects on its implementation (e.g. for storing the generator seed). We can specify and define e.g. a sync_random/1
predicate as follows:

:— synchronized (sync_random/1) .

sync_random (Random) :—
random: : random (Random) .

68 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

and then always use the sync_random/ 1 predicate instead of the predicate random/ 1 from multi-threaded code.

The synchronization entity and predicate directives may be used when defining objects that may be reused in both
single-threaded and multi-threaded Logtalk applications. The directives are simply ignored (i.e. the synchronized
predicates are interpreted as normal predicates) when the objects are used in a single-threaded application.

1.10.6 Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time by different
threads. Sometimes we need to suspend a thread not on a synchronization lock but on some condition that must hold
true for a thread goal to proceed. L.e. we want a thread goal to be suspended until a condition becomes true instead
of simply failing. The built-in predicate threaded_wait/I allows us to suspend a predicate execution (running in its
own thread) until a notification is received. Notifications are posted using the built-in predicate threaded_notify/I.
A notification is a Prolog term that a programmer chooses to represent some condition becoming true. Any Prolog
term can be used as a notification argument for these predicates. Related calls to the threaded_wait/1 and
threaded_notify/1 must be made within the same object, this, as the object message queue is used internally
for posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1 predicate is consumed by a single
threaded_wait/1 predicate call (i.e. these predicates implement a peer-to-peer mechanism). Care should be
taken to avoid deadlocks when two (or more) threads both wait and post notifications to each other.

1.10.7 Threaded engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections. An engine
is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine also supports a
term queue that allows passing arbitrary terms to the engine.

An engine is created by calling the threaded_engine_create/3 built-in predicate. For example:

| ?- threaded_engine_create (X, member (X, [1,2,3]), worker).
yes

The first argument is an answer template to be used for retrieving solution bindings. The user can name the engine, as
in this example where the atom worker is used, or have the runtime generate a name, which should be treated as an
opaque term.

Engines are scoped by the object within which the threaded_engine_create/ 3 call takes place. Thus, different
objects can create engines with the same names with no conflicts. Moreover, engines share the visible predicates of
the object creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved. Solutions can
be retrieved one at a time using the threaded_engine_next/2 built-in predicate:

| ?- threaded_engine_next (worker, X).
X =1
yes

The call blocks until a solution is available and fails if there are no solutions left. After returning a solution, this
predicate signals the engine to start computing the next one. Note that this predicate is deterministic. In contrast
with the threaded_exit/1-2 built-in predicates, retrieving the next solution requires calling the predicate again
instead of by backtracking into its call. For example:

collect_all (Engine, [X] Xs]) :—
threaded_engine_next (Engine, X),

(continues on next page)

1.10. Multi-threading programming 69

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

|
I

collect_all (Engine, Xs).
collect_all(, I[1).

There is also a reified alternative version of the predicate, threaded _engine_next_reified/2, which returns
the (Answer), no, and exception (Error) terms as answers. Using this predicate, collecting all solutions
to an engine uses a different programming pattern:

threaded_engine_next_reified(Engine,
collect_all_reifeid(Answer, Engine, Lis

collect_all_reifeid(no, _, [1).

collect_all_reifeid(the(X), Engine, [X]| Xs]) :—
threaded_engine_next_reified(Engine, Answer),
collect_all_reifeid(Answer, Engine, Xs).

Engines must be explicitly terminated using the threaded_engine_destroy/I built-in predicate:

| ?- threaded_engine_destroy (worker) .
yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to retrieve a
task to be performed. For example, assume we define the following predicate:

loop :—
threaded_engine_fetch (Task),
handle (Task),
loop.

The threaded_engine_fetch/I built-in predicate fetches a task for the engine term queue. The engine clients would use
the threaded_engine_post/2 built-in predicate to post tasks into the engine term queue. The engine would be created
using the call:

| ?- threaded_engine_create (none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the threaded_engine_yield/I built-in predicate to make
the task results available for consumption using the threaded_engine_next /2 built-in predicate. Blocking
semantics are used by these two predicates: the threaded_engine_yield/1 predicate blocks until the returned
solution is consumed while the threaded_engine_next /2 predicate blocks until a solution becomes available.

1.10.8 Multi-threading performance

The performance of multi-threading applications is highly dependent on the backend Prolog compiler, on the
operating-system, and on the use of dynamic binding and dynamic predicates. All compatible backend Prolog compil-
ers that support multi-threading features make use of POSIX threads or pthreads. The performance of the underlying
pthreads implementation can exhibit significant differences between operating systems. An important point is syn-
chronized access to dynamic predicates. As different threads may try to simultaneously access and update dynamic
predicates, these operations may used a lock-free algorithm or be protected by a lock, usually implemented using a
mutex. In the latter case, poor mutex lock operating-system performance, combined with a large number of collisions

70 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

by several threads trying to acquire the same lock, can result in severe performance penalties. Thus, whenever possible,
avoid using dynamic predicates and dynamic binding.

1.11 Error handling

All error handling is done in Logtalk by using the standard catch/3 and throw/1 predicates [ISO95]. Errors
thrown by Logtalk have (when possible) the following format:

’error(?rrwr, logtalk (Goal, ExecutionContext))

In this exception term, Goal is the goal that triggered the error Error and ExecutionContext is the context in
which Goal is called. For example:

error (
permission_error (modify,private_predicate,p),
logtalk (foo::abolish(p/0), _)

Note, however, that Goal and ExecutionContext can be unbound or only partially instantiated when the cor-
responding information is not available (e.g. due to compiler optimizations that throw away the necessary er-
ror context information). The ExecutionContext argument is an opaque term that can be decoded using the
logtalk::execution_context/7 predicate.

1.11.1 Compiler warnings and errors

The current Logtalk compiler uses the standard read_term/3 built-in predicate to read and compile a Logtalk
source file. This improves the compatibility with backend Prolog compilers and their proprietary syntax extensions
and standard compliance quirks. But one consequence of this design choice is that invalid Prolog terms or syntax
errors may abort the compilation process with limited information given to the user (due to the inherent limitations of
the read_term/3 predicate).

Assuming that all the terms in a source file are valid, there is a set of errors and potential errors, described below, that
the compiler will try to detect and report, depending on the used compiler flags (see the Compiler flags section of this
manual on lint flags for details).

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may reveal a
misspell entity name or just an entity that it will be loaded later. Out-of-oder loading should be avoided when possible
as it prevents some code optimizations such as szatic binding of messages to methods.

Singleton variables

Singleton variables in a clause are often misspell variables and, as such, one of the most common errors when pro-
gramming in Prolog. Assuming that the backend Prolog compiler implementation of the read_term/3 predicate
supports the standard singletons/1 option, the compiler warns about any singleton variable found while compil-
ing a source file.

1.11. Error handling 71

https://logtalk.org/library/logtalk_0.html#logtalk-0-execution-context-7

The Logtalk Handbook, Release v3.21.0

Redefinition of Prolog built-in predicates
The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or category.
Sometimes the redefinition is intended. In other cases, the user may not be aware that a particular backend Prolog

compiler may already provide the predicate as a built-in predicate or may want to ensure code portability among
several Prolog compilers with different sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn us if we try to redefine a
Logtalk built-in. But the redefinition will probably be an error in most (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default behavior is to
report the error and abort the compilation of the offending entity.

Misspell calls of local predicates
A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to a local predicate that is not

defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are simple misspell
errors.

Portability warnings
A warning will be reported if a predicate clause contains a call to a non-standard built-in predicate or arithmetic

function, Portability warnings are also reported for non-standard flags or flag values. These warnings often cannot be
avoided due to the limited scope of the ISO Prolog standard.

Deprecated elements

A warning will be reported if a deprecated directive or control construct is used. These warnings should be fixed as
soon as possible as support for any deprecated features will likely be discontinued in future versions.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate directive.

Duplicated directives
A warning will be reported for any duplicated scope, multifile, dynamic, discontiguous, meta-predicate, and meta-

non-terminal directives. Note that conflicting directives for the same predicate are handled as errors, not as duplicated
directive warnings.

Goals that are always true or false

A warning will be reported for any goal that is always true or false. This is usually caused by typos in the code. For
example, writing X == y instead of X ==

72 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Trivial fails

A warning will be reported for any call to a local static predicate with no matching clause.

Suspicious calls
A warning will be reported for calls that are syntactically correct but most likely a semantic error. An example is

: : /1 calls in clauses that apparently are meant to implement recursive predicate definitions where the user intention
is to call the local predicate definition.

Lambda variables

A warning will be reported for lambda expressions with unclassified variables (not listed as either lambda free or
lambda parameter variables) or where variables play a dual role (as both lambda free and lambda parameter variables).

Redefinition of predicates declared in uses/2 and use_module/2 directives

A error will be reported for any attempt to define locally a predicate that is already declared in an uses/2 or
use_module/2 directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed. The default
behavior is to report the error and abort the compilation of the offending entity.

1.11.2 Runtime errors

This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in methods or
from message sending. For a complete and detailed description of runtime errors please consult the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling arguments, throwing an exception in case of
misuse.

Logtalk built-in methods

Most Logtalk built-in method checks the type and mode of the calling arguments, throwing an exception in case of
misuse.

Message sending

The message sending mechanisms always check if the receiver of a message is a defined object and if the message
corresponds to a declared predicate within the scope of the sender. The built-in protocol forwarding declares a pred-
icate, forward/I, which is automatically called (if defined) by the runtime for any message that the receiving object
does not understand. The usual definition for this error handler is to delegate or forward the message to another object
that might be able to answer it:

1.11. Error handling 73

https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.21.0

forward (Me

Object::

More sophisticated definitions are, of course, possible.

1.12 Documenting applications

Assuming that the source_data is turned on, the compiler saves all relevant documenting information collected when
compiling a source file. The provided 1gtdoc tool can access this information by using the reflection support and
generate a documentation file for each compiled entity (object, protocol, or category) in XML format. Contents of
the XML file include the entity name, type, and compilation mode (static or dynamic), the entity relations with other
entities, and a description of any declared predicates (name, compilation mode, scope, ...).

The XML documentation files can be enriched with arbitrary user-defined information, either about an entity or about
its predicates, by using the two directives described next.

1.12.1 Documenting directives
Logtalk supports two documentation directives for providing arbitrary user-defined information about an entity or a

predicate. These two directives complement other directives that also provide important documentation information
such as the mode/2 directive.

Entity directives

Arbitrary user-defined entity information can be represented using the info/I directive:

:— info ([

Lo

1 is Valuel,
y2 is ValueZ2,

1) .

In this pattern, keys should be atoms and values should be ground terms. The following keys are predefined and may
be processed specially by Logtalk tools:

comment Comment describing the entity purpose (an atom).

author Entity author(s) (an atom or a compound term {entity} where entity is the name of an XML entity
defined in the custom. ent file).

version Version number (a number).
date Date of last modification (formatted as Year/Month/Day where Year, Month, and Day are integers).

parameters Parameter names and descriptions for parametric entities (a list of Name-Description pairs where both
names and descriptions are atoms).

parnames Parameter names for parametric entities (a list of atoms; a simpler version of the previous key, used when
parameter descriptions are deemed unnecessary).

74 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

copyright Copyright notice for the entity source code (an atom or a compound term {entity} where entity
is the name of an XML entity defined in the custom. ent file).

license License terms for the entity source code; usually, just the license name (an atom or a compound term
{entity} where entity is the name of an XML entity defined in the custom. ent file).

remarks List of general remarks about the entity using Topic-Text pairs where both the topic and the text must be
atoms.

see_also List of related entities (using the entity indentifiers, which can be atoms or compound terms).

For example:

:— info ([
version is 2.1,
author is 'Paulo Moura',
date is 2000/04/20,
comment is 'Building representation.',
diagram is 'UML Class Diagram #312'
1) .

Use only the keywords that make sense for your application and remember that you are free to invent your own
keywords. All key-value pairs can be retrieved programmatically using the reflection API and are visible to 1gtdoc
tool.

Predicate directives

Arbitrary user-defined predicate information can be represented using the info/2 directive:

:— info (Name/Arity, [
Key is Valuel,
Key2 is Value?2,

The first argument can also a grammar rule non-terminal indicator, Name / /Arity. Keys should be atoms and values
should be bound terms. The following keys are predefined and may be processed specially by Logtalk tools:

comment Comment describing the predicate purpose (an atom).

arguments Names and descriptions of predicate arguments for pretty print output (a list of Name-Description pairs
where both names and descriptions are atoms).

argnames Names of predicate arguments for pretty print output (a list of atoms; a simpler version of the previous
key, used when argument descriptions are deemed unnecessary).

allocation Objects where we should define the predicate. = Some possible values are container,
descendants, instances, classes, subclasses, and any.

redefinition Describes if predicate is expected to be redefined and, if so, in what way. Some possible values are
never, free, specialize,call_super_first,call_ super_last.

exceptions List of possible exceptions throw by the predicate using Description-Exception term pairs. The de-
scription must be an atom. The exception term must be a non-variable term.

examples List of typical predicate call examples using the format Description-Goal-Bindings. The description must
be an atom. The predicate call term must be a non-variable term. The variable bindings term uses the format
{Variable = Term, ... }. When there are no variable bindings, the success or failure of the predicate call should
be represented by the terms {yes} or {no}, respectively.

1.12. Documenting applications 75

The Logtalk Handbook, Release v3.21.0

remarks List of general remarks about the predicate using Topic-Text pairs where both the topic and the text must
be atoms.

For example:

:— info(color/1, [
comment is 'Table of defined colors.',
argnames is ['Color'],
constraint is 'Up to four visible colors allowed.'

1) .

As with the info/1 directive, use only the keywords that make sense for your application and remember that you are
free to invent your own keywords. All key-value pairs can also be retrieved programmatically using the reflection API
and are visible to 1gtdoc tool.

1.12.2 Processing and viewing documenting files

The 1gtdoc tool generates an XML documenting file per entity. It can also generate library, directory, entity, and
predicate indexes when documenting libraries and directories. For example, assuming the default filename extensions,
atrace objectand a sort (_) parametric object will result in t race_0.xml and sort_1.xml XML files.

Each entity XML file contains references to two other files, an XML specification file and a XSLT style-sheet
file. The XML specification file can be either a DTD file (logtalk_entity.dtd) or an XML Scheme file
(logtalk_entity.xsd). The XSLT style-sheet file is responsible for converting the XML files to some desired
format such as HTML or PDF. The default names for the XML specification file and the XSL style-sheet file are de-
fined by the 1gtdoc tool but can be overridden by passing a list of options to the tool predicates. The 1gtdoc/xml
sub-directory in the Logtalk installation directory contains the XML specification files described above, along with
several sample XSL style-sheet files and sample scripts for converting XML documenting files to several formats (e.g.
reStructuredText, Markdown, HTML, and PDF). Please read the NOTES file included in the directory for details. You
may use the supplied sample files as a starting point for generating the documentation of your Logtalk applications.

The Logtalk DTD file, logtalk_entity.dtd, contains a reference to a user-customizable file, custom.ent,
which declares XML entities for source code author names, license terms, and copyright string. After editing the
custom.ent file to reflect your personal data, you may use the XML entities on info/1 documenting directives.
For example, assuming that the XML entities are named author, license, and copyright we may write:

:— info ([
version is 1.1,
author is {author},
license is {license},
copyright is {copyright}
1).

The entity references are replaced by the value of the corresponding XML entity when the XML documenting files are
processed (not when they are generated; this notation is just a shortcut to take advantage of XML entities).

The 1gtdoc tool supports a set of options that can be used to control the generation of the XML documentation files.
Please see the tool documentation for details.

1.12.3 Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown (or reStructuredText) syntax and con-
verting XML documenting files to Markdown (or reStructuredText) files (and these, if required, to e.g. HTML, ePub,
or PDF formats).

76 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

1.13 Performance

Logtalk is implemented as a trans-compiler to Prolog. When compiling predicates, it preserves in the generated
Prolog code all cases of first-argument indexing and tail-recursion. In practice, this mean that if you know how to
write efficient Prolog predicates, you already know how to write Logtalk predicates.

The Logtalk compiler adds an hidden execution-context argument to all entity predicates. When a predicate makes
no calls to either execution-context predicates or message-sending control constructs and is neither a meta-predicate
or a coinductive predicate, the execution-context argument is simply passed around. In this case, with most backend
Prolog VMs, the cost of this extra argument is null or negligible. When the execution-context argument needs to be
accessed (e.g. to fetch the value of self for a : : /1 call) there may be a small inherent overhead due to the implicit
unifications.

1.13.1 Local predicate calls

Local calls to object (or category) predicates have zero overhead in terms of number of inferences, as expected,
compared with local Prolog calls.

1.13.2 Calls to imported or inherited predicates

Assuming the opt imize flag is turned on and a static predicate, ~~ /1 calls have zero overhead in terms of number
of inferences.

1.13.3 Calls to module predicates

Local calls from an object (or category) to a module predicate have zero overhead (assuming both the module and the
predicate are bound at compile time).

1.13.4 Messages

For : : /1-2 calls Logtalk implements static binding and dynamic binding. For dynamic binding, a caching mecha-
nism is used by the runtime. It’s useful to measure the performance overhead in number of inferences compared with
plain Prolog/Prolog modules. The results for Logtalk 3.17.0 and later versions are:

* Static binding: 0
* Dynamic binding (object bound at compile time): 1
* Dynamic binding (object bound at runtime time): 2

Static binding is the common case with libraries and most application code; it requires compiling code with the
optimize flag turned on. Dynamic binding numbers are after the first call (i.e. after the generalization of the query
is cached). All numbers with the event s flag set to deny (setting this flag to a1 1 ow adds an overhead of 5 inferences
to the numbers above).

The dynamic binding caches assume the used backend Prolog compiler does indexing of dynamic predicates. This is a
common feature of modern Prolog systems but the actual details vary from system to system and may have an impact
on dynamic binding performance.

Note that messages to self (: :/1 calls) always use dynamic binding as the object that receives the message is only
know at runtime.

1.13. Performance 77

The Logtalk Handbook, Release v3.21.0

1.13.5 Inlining

When the opt imize flag is turned on, the Logtalk compiler performs inlining of predicate calls whenever possible.
This includes calls to built-in predicates such as once/1, ignore/1, and phrase/2-3 but also calls to Prolog
predicates that are either built-in, foreign, or defined in a module (including user). Inlining notably allows wrapping
module or foreign predicates using an object without introducing any overhead.

1.13.6 Generated code simplification and optimizations

When the optimize flag is turned on, the Logtalk compiler simplifies and optimizes generated clauses (including
those resulting from the compilation of grammar rules), by flattening conjunctions, folding left unifications (e.g. gen-
erated as a by-product of the compilation of grammar rules), and removing redundant calls to t rue /0.

1.13.7 Other considerations

One aspect of performance, that affects both Logtalk and Prolog code, is the characteristics of the Prolog VM. The
Logtalk distribution includes two examples, bench and benchmarks, to help evaluate performance with specific back-
end Prolog systems. A table with results for a subset of the supported systems is also available in the Logtalk website.

1.14 Installing Logtalk

This page provides an overview of Logtalk installation requirements and instructions and a description of the files
contained on the Logtalk distribution. For detailed, up-to-date installation and configuration instructions, please see
the README .md, INSTALL.md, and CUSTOMIZE .md files distributed with Logtalk. The broad compatibility of
Logtalk, both with Prolog compilers and operating-systems, together with all the possible user scenarios, means that
installation can vary from very simple by running an installer or a couple of scripts to the need of patching both
Logtalk and Prolog compilers to workaround the lack of strong Prolog standards or to cope with the requirements of
less common operating-systems.

The preferred installation scenario is to have Logtalk installed in a system-wide location, thus available for all users,
and a local copy of user-modifiable files on each user home directory (even when you are the single user of your com-
puter). This scenario allows each user to independently customize Logtalk and to freely modify the provided libraries
and programming examples. Logtalk installers, installation shell scripts, and Prolog integration scripts favor this in-
stallation scenario, although alternative installation scenarios are always possible. The installers set two environment
variables, LOGTALKHOME and LOGTALKUSER, pointing, respectively, to the Logtalk installation folder and to the
Logtalk user folder.

User applications should preferable be kept outside of the Logtalk user folder created by the installation process,
however, as updating Logtalk often results in updating the contents of this folder. If your applications depend on
customizations to the distribution files, backup those changes before updating Logtalk.

1.14.1 Hardware and software requirements

Computer and operating system

Logtalk is compatible with almost any computer/operating-system with a modern, standards compliant, Prolog com-
piler available.

78 Chapter 1. User Manual

https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/bench
https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/benchmarks
https://logtalk.org/performance.html

The Logtalk Handbook, Release v3.21.0

Prolog compiler
Logtalk requires a backend Prolog compiler supporting official and de facto standards. Capabilities needed by Logtalk
that are not defined in the official ISO Prolog Core standard include:

* access to predicate properties

* operating-system access predicates

* de facto standard predicates not (yet) specified in the official standard

Logtalk needs access to the predicate property built_in to properly compile objects and categories that contain
Prolog built-in predicates calls. In addition, some Logtalk built-ins need to know the dynamic/static status of predicates
to ensure correct application. The ISO standard for Prolog modules defines a predicate_property/2 predicate
that is already implemented by most Prolog compilers. Note that if these capabilities are not built-in the user cannot
easily define them.

For optimal performance, Logtalk requires that the Prolog compiler supports first-argument indexing for both static
and dynamic code (most modern compilers support this feature).

Since most Prolog compilers are moving closer to the ISO Prolog standard [ISO95], it is advisable that you try to use
the most recent version of your favorite Prolog compiler.

1.14.2 Logtalk installers
Logtalk installers are available for macOS, Linux, and Microsoft Windows. Depending on the chosen installer, some

tasks (e.g. setting environment variables or integrating Logtalk with some Prolog compilers) may need to be performed
manually.

1.14.3 Source distribution

Logtalk sources are available in a t ar archive compressed with bzip2, 1gt 3xxx.tar.bz2. You may expand the
archive by using a decompressing utility or by typing the following commands at the command-line:

This will create a sub-directory named 1gt 3xxx in your current directory. Almost all files in the Logtalk distribution
are text files. Different operating-systems use different end-of-line codes for text files. Ensure that your decompressing
utility converts the end-of-lines of all text files to match your operating system.

1.14.4 Directories and files organization

In the Logtalk installation directory, you will find the following files and directories:
BIBLIOGRAPHY .bib — Logtalk bibliography in BibTeX format

CUSTOMIZE .md — Logtalk end-user customization instructions

INSTALL.md — Logtalk installation instructions

LICENSE.txt — Logtalk user license

NOTICE. txt — Logtalk copyright notice

QUICK_START.md — Quick start instructions for those that do not like to read manuals
README . md — several useful information

RELEASE_NOTES .md — release notes for this version

1.14. Installing Logtalk 79

The Logtalk Handbook, Release v3.21.0

UPGRADING.md — instructions on how to upgrade your programs to the current Logtalk version

VERSION. txt —file containing the current Logtalk version number (used for compatibility checking when upgrading
Logtalk)

loader-sample. lgt —sample loader file for user applications
settings—-sample. lgt —sample file for user-defined Logtalk settings
tester-sample.lgt —sample file for helping to automate running user application unit tests

adapters NOTES.md — notes on the provided adapter files template.pl — template adapter file . . . — specific
adapter files

coding NOTES.md — notes on syntax highlighter and text editor support files providing syntax coloring for pub-
lishing and editing Logtalk source code . . . — syntax coloring support files

contributions NOTES.md — notes on the user-contributed code . . . — user-contributed code files
core NOTES.md — notes on the current status of the compiler and runtime . . . — core source files

docs NOTES.md — notes on the provided documentation for core, library, tools, and contributions entities index.
html —root document for all entities documentation . . . — other entity documentation files

examples NOTES.md — short description of the provided examples bricks NOTES.md — example description
and other notes SCRIPT . txt — step by step example tutorial 1oader . 1gt —loader utility file for the example
objects . . . — bricks example source files

. . . —other examples

integration NOTES.md — notes on scripts for Logtalk integration with Prolog compilers . . . — Prolog integra-
tion scripts

library NOTES.md — short description of the library contents all_loader.lgt — loader utility file for all
library entities . . . — library source files

man ... — POSIX man pages for the shell scripts

manuals NOTES.md - notes on the provided documentation bibliography.html —bibliography glossary.
html — glossary index .html — root document for all documentation . . . — other documentation files

paths NOTES.md — description on how to setup library and examples paths paths.pl — default library and
example paths

scratch NOTES.md — notes on the scratch directory

scripts NOTES.md —notes on scripts for Logtalk user setup, packaging, and installation . . . — packaging, instal-
lation, and setup scripts

tests NOTES.md — notes on the current status of the unit tests . . . — unit tests for built-in features

tools NOTES.md — notes on the provided programming tools . . . — programming tools

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime and a Prolog compiler. Each adapter file
contains two sets of predicates: ISO Prolog standard predicates and directives not built-in in the target Prolog compiler
and Logtalk specific predicates.

Logtalk already includes ready to use adapter files for most academic and commercial Prolog compilers. If an adapter
file is not available for the compiler that you intend to use, then you need to build a new one, starting from the included
template.pl file. Start by making a copy of the template file. Carefully check (or complete if needed) each listed
definition. If your Prolog compiler conforms to the ISO standard, this task should only take you a few minutes. In most
cases, you can borrow code from the predefined adapter files. If you are unsure that your Prolog compiler provides all

80 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

the ISO predicates needed by Logtalk, try to run the system by setting the unknown predicate error handler to report
as an error any call to a missing predicate. Better yet, switch to a modern, ISO compliant, Prolog compiler. If you
send me your adapter file, with a reference to the target Prolog compiler, maybe I can include it in the next release of
Logtalk.

The adapter files specifies default values for most of the Logtalk compiler flags. Most of these compiler flags are
described in the next section. A few of these flags have read-only values and cannot be changed at runtime. These are:

settings_file Allows or disables loading of a settings file at startup. Possible values are allow, restrict,
and deny. The usual default value is allow but it can be changed by editing the adapter file when e.g.
embedding Logtalk in a compiled application. With a value of allow, settings files are searched in the startup
directory, in the Logtalk user directory, and in the user home directory. With a value of restrict, settings
files are only searched in the Logtalk user directory and in the user home directory.

prolog_dialect Name of the backend Prolog compiler (an atom). This flag can be used for conditional compi-
lation of Prolog specific code.

prolog_version Version of the backend Prolog compiler (a compound term, v (Major, Minor, Patch),
whose arguments are integers). This flag availability depends on the Prolog compiler. Checking the value of
this flag fails for any Prolog compiler that does not provide access to version data.

prolog_compatible_version Compatible version of the backend Prolog compiler (a compound term, usually
with the format @>= (v (Major, Minor, Patch)), whose arguments are integers). This flag availability
depends on the Prolog compiler. Checking the value of this flag fails for any Prolog compiler that does not
provide access to version data.

prolog_conformance Level of conformance of the backend Prolog compiler with the ISO Prolog Core standard.
The possible values are strict for compilers claiming strict conformance and lax for compilers claiming
only broad conformance.

unicode Informs Logtalk if the backend Prolog compiler supports the Unicode standard. Possible flag values are
unsupported, full (all Unicode planes supported), and bmp (supports only the Basic Multilingual Plane).

encoding_directive Informs Logtalk if the backend Prolog compiler supports the encoding/I directive. This
directive is used for declaring the text encoding of source files. Possible flag values are unsupported, full
(can be used in both Logtalk source files and compiler generated Prolog files), and source (can be used only
in Logtalk source files).

tabling Informs Logtalk if the backend Prolog compiler provides tabling programming support. Possible flag
values are unsupported and supported.

engines Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for Logtalk threaded engines. Possible flag values are unsupported and supported.

threads Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for all high-level Logtalk multi-threading features. Possible flag values are unsupported and
supported.

modules Informs Logtalk if the backend Prolog compiler provides suitable module support. Possible flag values are
unsupported and supported (Logtalk provides limited support for compiling Prolog modules as objects).

coinduction Informs Logtalk if the backend Prolog compiler provides the minimal support for cyclic terms nec-
essary for working with coinductive predicates. Possible flag values are unsupported and supported.

Settings files

Although is always possible to edit the backend Prolog compiler adapter files, the recommended solution to customize
compiler flags is to edit the settings.lgt file in the Logtalk user folder or in the user home folder. Depending
on the backend Prolog compiler and on the operating-system, is also possible to define per-project settings files by
creating a settings. 1gt file in the project directory and by starting Logtalk from this directory. At startup, Logtalk

1.14. Installing Logtalk 81

programming.html#programming_flags

The Logtalk Handbook, Release v3.21.0

tries to load a settings. 1gt file from the startup directory (assuming that the read-only settings_file flag is set to
allow). If not found, Logtalk tries to load a settings.lgt file from the Logtalk user folder. If still not found,
Logtalk tries to load a settings. 1gt file from the user home folder. When no settings files are found, Logtalk will
use the default compiler flag values set on the backend Prolog compiler adapter files. When limitations of the backend
Prolog compiler or on the operating-system prevent Logtalk from finding the settings files, these can always be loaded
manually after Logtalk startup.

Settings files are normal Logtalk source files (although when automatically loaded by Logtalk they are compiled
silently with any errors being simply ignored). The usual contents is an initialization/1 Prolog directive
containing calls to the set_logtalk_flag/2 Logtalk built-in predicate and asserting clauses for the logtalk_library_path/2
multifile dynamic predicate. Note that the ser_logtalk_flag/2 directive cannot be used as its scope is local to the source
file being compiled. For example, one of the troubles of writing portable applications is the different feature sets
of Prolog compilers. A typical issue is the lack of support for tabling. Using the Logtalk support for conditional
compilation you could write:

:— if (current_logtalk flag(tabling, supported)).

dlrectives TCTO the source cod

:— table(foo/1).
:— table (bar/2).

:— endif.

The prolog_dialect flag may also be used with the conditional compilation directives in order to define a single settings
file that can be used with several backend Prolog compilers. For example:

:— if (current_logtalk_flag(prolog_dialect, yap)).

:— elif (current_logtalk_flag(prolog_dialect, gnu)).

:— else.

:— endif.

Logtalk compiler and runtime
The compiler sub-directory contains the Prolog source file(s) that implement the Logtalk compiler and the Logtalk

runtime. The compiler and the runtime may be split in two (or more) separate files or combined in a single file,
depending on the Logtalk release that you are installing.

Library

Starting from version 2.7.0, Logtalk contains a standard library of useful objects, categories, and protocols. Read the
corresponding NOTES . md file for details about the library contents.

82 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Examples

Logtalk 2.x and 3.x contain new implementations of some of the examples provided with previous 1.x versions. The
sources of each one of these examples can be found included in a subdirectory with the same name, inside the directory
examples. The majority of these examples include a file named SCRIPT. txt that contains cases of simple utilization.
Some examples may depend on other examples and library objects to work properly. Read the corresponding NOTES .
md file for details before running an example.

Logtalk source files

Logtalk source files are text files containing one or more entity definitions (objects, categories, or protocols). The
Logtalk source files may also contain plain Prolog code. The extension . 1gt is normally used. Logtalk compiles
these files to plain Prolog by appending to the file name a suffix derived from the extension and by replacing the . 1gt
extension with . pl (.pl is the default Prolog extension; if your Prolog compiler expects the Prolog source filenames
to end with a specific, different extension, you can set it in the corresponding adapter file).

1.15 Writing, running, and debugging applications

1.15.1 Writing applications

For a successful programming in Logtalk, you need a good working knowledge of Prolog and an understanding of the
principles of object-oriented programming. Most guidelines for writing good Prolog code apply as well to Logtalk
programming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enable us to use the currently available object-oriented
methodologies, tools, and metrics [Champaux92] in logic programming. That said, writing applications in Logtalk is
similar to writing applications in Prolog: we define new predicates describing what is true about our domain objects,
about our problem solution. We encapsulate our predicate directives and definitions inside new objects, categories, and
protocols that we create by hand with a text editor or by using the Logtalk built-in predicates. Some of the information
collected during the analysis and design phases can be integrated in the objects, categories and protocols that we define
by using the available entity and predicate documenting directives.

Source files

Logtalk source files may define any number of entities (objects, categories, or protocols) and Prolog code. If you
prefer to define each entity in its own source file, then it is recommended that the source file be named after the entity
identifier. For parametric objects, the identifier arity can be appended to the identifier functor. By default, all Logtalk
source files use the extension . 1gt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _1gt suffix and a . p1 extension. Again, this can be set to
match the needs of a particular Prolog compiler in the corresponding adapter file. For example, we may define an object
named vehicle and save it in a vehicle. lgt source file that will be compiled to a vehicle_lgt.pl Prolog
file. If we have a sort (_) parametric object we can save it on a sort_1.1gt source file that will be compiled
toa sort_1_lgt.pl Prolog file. This name scheme helps avoid file name conflicts (remember that all Logtalk
entities share the same namespace). To further prevent file name conflicts, specially when embedding applications,
and depending on the backend compiler, the names of the intermediate Prolog files may include a directory hash.

Logtalk source files may contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is usu-
ally copied as-is to the corresponding Prolog output file (except, of course, if subject to the term-expansion mech-
anism). Prolog modules are compiled as objects. The following Prolog directives are processed when read (thus
affecting the compilation of the source code that follows): ensure_loaded/1, use_module/1-2, op/3, and
set_prolog_flag/2. Theinitialization/1 Prolog directive may be used for defining an initialization goal

1.15. Writing, running, and debugging applications 83

The Logtalk Handbook, Release v3.21.0

to be executed when loading a source file. Most calls to Logtalk built-in predicates from file initialization/1
directives are compiled for better performance.

The text encoding used in a source file may be declared using the encoding/I directive when running Logtalk with
backend Prolog compilers that support multiple encodings (check the encoding_directive flag in the adapter file of
your Prolog compiler).

Logtalk source files can include the text of other files by using the include/I directive. Although there is also a
standard Prolog include/1 directive, any occurrences of this directive in a Logtalk source file is handled by the
Logtalk compiler, not by the backend Prolog compiler.

Portable applications

Logtalk is compatible with most modern standards compliant Prolog compilers. However, this does not necessarily
imply that your Logtalk applications will have the same level of portability. If possible, you should only use in your
applications Logtalk built-in predicates and ISO Prolog specified built-in predicates and arithmetic functions. If you
need to use built-in predicates (or built-in arithmetic functions) that may not be available in other Prolog compilers,
you should try to encapsulate the non-portable code in a small number of objects and provide a portable interface for
that code through the use of Logtalk protocols. An example will be code that access operating-system specific features.
The Logtalk compiler can warn you of the use of non-ISO specified built-in predicates and arithmetic functions by
using the portability compiler flag.

Conditional compilation

Logtalk supports conditional compilation within source files using the if/1, elif/1, else/0, and endif/0 directives. This
support is similar to the support found in several Prolog systems such as ECLiPSe, GNU Prolog, SICStus Prolog,
SWI-Prolog, XSB, and YAP.

Avoiding common errors

Try to write objects and protocol documentation before writing any other code; if you are having trouble documenting
a predicate perhaps we need to go back to the design stage.

Try to avoid lengthy hierarchies. Composition is often a better choice over inheritance for defining new objects
(Logtalk supports component-based programming through the use of categories). In addition, prototype-based hierar-
chies are semantically simpler than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should always try to minimize the use of
non-logical features such as asserts and retracts.

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate predicate,
then the respective directives must be repeated to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return arguments comply with the declared modes. On the
other hand, Logtalk built-in predicates, built-in methods, and message sending control structures are fully checked for
calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance, the
error terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predicates behave
as defined in the ISO standard regarding error conditions. In particular, if your Prolog compiler does not support a
read_term/ 3 built-in predicate compliant with the ISO Prolog Standard definition, then the current version of the
Logtalk compiler may not be able to detect misspell variables in your source code.

84 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Coding style guidelines

It is suggested that all code between an entity opening and closing directives be indented by one tab stop. When
defining entity code, both directives and predicates, Prolog coding style guidelines may be applied. All Logtalk source
files, examples, and standard library entities use tabs (the recommended setting is a tab width equivalent to 4 spaces)
for laying out code. Closed related entities can be defined in the same source file. However, for best performance,
is often necessary to have an entity per source file. Entities that might be useful in different contexts (such as library
entities) are best defined in their own source files.

1.15.2 Compiling and running applications

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does not modify
your Prolog compiler. We can freely mix Prolog queries with the sending of messages and our applications can be
made of both normal Prolog clauses and object definitions.

Starting Logtalk

Depending on your Logtalk installation, you may use a script or a shortcut to start Logtalk with your chosen Prolog
compiler. On POSIX operating systems, the scripts should be available from the command-line; scripts are named
upon the used Prolog compilers. On Windows, the shortcuts should be available from the Start Menu. If no scripts
or shortcuts are available for your installation, operating-system, or Prolog compiler, you can always start a Logtalk
session by performing the following steps:

1. Start your Prolog compiler.

2. Load the appropriate adapter file for your compiler. Adapter files for most common Prolog compilers can be
found in the adapters subdirectory.

3. Load the library paths file corresponding to your Logtalk installation contained in the paths subdirectory.
4. Load the Logtalk compiler/runtime files contained in the compi ler subdirectory.

Note that the adapter files, compiler/runtime files, and library paths file are Prolog source files. The predicate called to
load (and compile) them depends on your Prolog compiler. In case of doubt, consult your Prolog compiler reference
manual or take a look at the definition of the predicate '$1gt_load_prolog_code'/3 in the corresponding
adapter file.

Most Prolog compilers support automatic loading of an initialization file, which can include the necessary directives
to load both the Prolog adapter file and the Logtalk compiler. This feature, when available, allows automatic loading
of Logtalk when you start your Prolog compiler.

Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source files can
be compiled to disk by calling the logtalk_compile/I built-in predicate:

| ?- logtalk_compile([source_filel, source_file2, ...]).

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that can then
be consulted or compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files we can use the logtalk_load/] built-in predicate:

| ?- logtalk_load([source_filel, source_file2, ...]).

1.15. Writing, running, and debugging applications 85

The Logtalk Handbook, Release v3.21.0

This predicate works in the same way of the predicate logtalk_compile/1 but also loads the compiled files into
memory.

Both predicates expect a source file name or a list of source file names as an argument. The Logtalk source file name
extension, as defined in the adapter file (by default, . 1gt), can be omitted.

If you have more than a few source files then you may want to use a loader helper file containing the calls to the
logtalk_load/1-2 predicates. Consulting or compiling the loader file will then compile and load all your Logtalk
entities into memory (see below for details).

With most Prolog backend compilers, you can use the shorthands {File} for logtalk_load(File) and
{Filel, File2, ...} for logtalk_load([Filel, File2, ...]). The use these shorthands should
be restricted to the Logtalk/Prolog top-level interpreter as they are not part of the language specification and may be
commented out in case of conflicts with backend Prolog compiler features.

The built-in predicate logtalk_make/0 can be used to reload all modified source files. Files are also reloaded when the
compilation mode changes. For example, assume that you have loaded your application files and found a bug. You
can easily recompile the files in debug mode by using the queries:

| ?— set_logtalk_flag(debug, on).

?— logtalk_make.

After debugging and fixing the bugs, you can reload the files in normal (or optimized) mode by turning the debug flag
off and calling the logtalk_make/0 predicate again. With most backend Prolog compilers, you can also use the
{ »} top-level shortcut.

An extended version of this predicate, logtalk_make/I, accepts multiple targets including all, clean, check,
circular, documentation, and caches. See the reference manual for a complete list of targets and top-
level shortcuts. In particular, the 1logtalk_make (clean) goal can be specially useful before switching backend
Prolog compilers as the generated intermediate files may not be compatible. The 1logtalk_make (caches) goal
is usually used when benchmarking compiler performance improvements.

Loader utility files

Most examples directories contain a Logtalk utility file that can be used to load all included source files. These loader
utility files are usually named loader.lgt or contain the word “loader” in their name. Loader files are ordinary
source file and thus compiled and loaded like any source file. For an example loader file named loader.lgt we
would type:

| ?- logtalk_load(loader).

Usually these files contain a call to the built-in predicates set_logtalk_flag/2 (e.g. for setting global, project-
specific, flag values) and logtalk _load/] or logtalk _load/2 (for loading project files), wrapped inside a Prolog
initialization/1 directive. For instance, if your code is split in three Logtalk source files named sourcel.
1lgt, source?2.1lgt, and source3. 1gt, then the contents of your loader file could be:

:— initialization ((
set_logtalk_flag(events, allow),

logtalk load([sourcel, sourcez, source3])

)) .

86 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Another example of directives that are often used in a loader file would be op/ 3 directives declaring global operators
needed by your application. Loader files are also often used for setting source file-specific compiler flags (this is
useful even when you only have a single source file if you always load it with using the same set of compiler flags).
For example:

:— initialization ((

I e S AR
Proje speciric global fla

setilogtalkiflag(underséore_variables, dont_care),
set_logtalk_flag(source_data, off),

£ 4

logtalkfloaa(
[sourcel, source2, source3],

[portability(wafning)]),
logtalk_load(
[sourced, sourceb],

> 7= I le—spec

[portability(silent)])
)) .

To take the best advantage of loader files, define a clause for the multifile and dynamic logtalk_library_path/
2 predicate for the directory containing your source files as explained in the next section.

A common mistake is to try to set compiler flags using logtalk_load/2 with a loader file. For example, by
writing:

| ?- logtalk_load(loader, [optimize(on)]).

This will not work as you might expect as the compiler flags will only be used in the compilation of the loader.1gt
file itself and will not affect the compilation of files loaded through the initialization/1 directive contained on
the loader file.

Libraries of source files

Logtalk defines a library simply as a directory containing source files. Library locations can be specified by defining
or asserting clauses for the dynamic and multifile predicate logtalk_library_path/2. For example:

:— multifile (logtalk_library_path/2).
:— dynamic (logtalk_library_path/2).

logtalk_library path(shapes, 'SLOGTALKUSER/examples/shapes/').

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases may also
be used on the second argument. For example:

:— multifile (logtalk_library_path/2).
:— dynamic (logtalk_library_path/2).

logtalk_library path(lgtuser, 'SLOGTALKUSER/').
logtalk_library path (examples, lgtuser ('examples/'")).
logtalk_library_path (viewpoints, examples ('viewpoints/')).

This allows us to load a library source file without the need to first change the current working directory to the library
directory and then back to the original directory. For example, in order to load a 1oader. 1gt file, contained in a
library named viewpoints, we just need to type:

1.15. Writing, running, and debugging applications 87

The Logtalk Handbook, Release v3.21.0

| ?- logtalk_load(viewpoints (loader)) .

The best way to take advantage of this feature is to load at startup a source file containing clauses for the
logtalk_library_path/2 predicate needed for all available libraries. This allows us to load library source
files or entire libraries without worrying about libraries paths, improving code portability. The directory paths on the
second argument should always end with the path directory separator character. Most backend Prolog compilers al-
lows the use of environment variables in the second argument of the logtalk_library_path/2 predicate. Use
of POSIX relative paths (e.g. ' ../ "' or '. /") for top-level library directories (e.g. 1gtuser in the example above)
is not advised as different backend Prolog compilers may start with different initial working directories, which may
result in portability problems of your loader files.

The library notation provides functionality inspired by the file_search_path/2 mechanism introduced by Quin-
tus Prolog and later adopted by some other Prolog compilers.

Compiler linter

The compiler includes a linter that checks for a wide range of possible problems in source files. Notably, the compiler
checks for unknown entities, unknown predicates, undefined predicates (i.e. predicates that are declared but not
defined), missing directives (including missing dynamic/1 and meta_predicate/1 directives), redefined built-
in predicates, calls to non-portable predicates, singleton variables, tautology and falsehood goals (i.e. goals that are
can be replaced by t rue or £ail), and trivial fails (i.e. calls to predicates with no match clauses). Some of the linter
warnings are controlled by compiler flags. See the next section for details.

Compiler flags

The logtalk_load/I and logtalk_compile/I always use the current set of default compiler flags as specified in your set-
tings file and the Logtalk adapter files or changed for the current session using the built-in predicate set_logtalk_flag/?2.
Although the default flag values cover the usual cases, you may want to use a different set of flag values while com-
piling or loading some of your Logtalk source files. This can be accomplished by using the logtalk_load/2 or the
logtalk_compile/2 built-in predicates. These two predicates accept a list of options affecting how a Logtalk source file
is compiled and loaded:

’I ?- logtalk_compile(Files, Options).

or:

’I ?- logtalk_load(Files, Options).

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are just shortcuts to the extended versions
called with the default compiler flag values. The options are represented by a compound term where the functor is the
flag name and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the adapter file by using the ser_logtalk_flag/2
built-in predicate. For example:

| ?- set_logtalk_flag(unknown_entities, silent).

The current default flags values can be enumerated using the current_logtalk_flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent
yes

88 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Logtalk also implements a set_logtalk_flag/2 directive, which can be used to set flags within a source file or within an
entity. For example:

:— set_logtalk_flag(events, allow).

:— object (foo) .

:— set_logtalk_flag(dynamic_declarations, allow).

:— end_object.

Note that the scope of the set_logtalk_flag/2 directive is local to the entity or to the source file containing it.

Version flags

version_data (Value) Read-only flag whose value is the compound term logtalk (Major,Minor,
Patch, Status). The first three arguments are integers and the last argument is an atom, possibly empty,
representing version status: aN for alpha versions, bN for beta versions, rcN for release candidates (with N
being a natural number), and st able for stable versions. The version_data flagis also a de facto standard
for Prolog compilers.

Lint flags

unknown_entities (Option) Controls the unknown entity warnings, resulting from loading an entity that ref-
erences some other entity that is not currently loaded. Possible option values are warning (the usual default)
and silent. Note that these warnings are not always avoidable, specially when using reflective designs of
class-based hierarchies.

unknown_predicates (Option) Defines the compiler behavior when calls to unknown predicates (or non-
terminals) are found. An unknown predicate is a called predicate that is neither locally declared or defined.
Possible option values are error, warning (the usual default), and silent (not recommended).

undefined predicates (Option) Defines the compiler behavior when calls to declared but undefined predi-
cates (or non-terminals) are found. Note that calls to declared but undefined predicates (or non-terminals) fail as
per closed-world assumption. Possible option values are error, warning (the usual default), and silent
(not recommended).

portability (Option) Controls the non-ISO specified Prolog built-in predicate and non-ISO specified Prolog
built-in arithmetic function calls warnings plus use of non-standard Prolog flags and/or flag values. Possible
option values are warning and silent (the usual default).

missing_directives (Option) Controls the missing predicate directive warnings. Possible option values are
warning (the usual default) and silent (not recommended).

duplicated directives (Option) Controls the duplicated predicate directive warnings. Possible option val-
ues are warning (the usual default) and silent (not recommended). Note that conflicting directives for the
same predicate are handled as errors, not as duplicated directive warnings.

1.15. Writing, running, and debugging applications 89

The Logtalk Handbook, Release v3.21.0

trivial_goal_fails (Option) Controls the printing of warnings warnings for calls to local static predicates
with no matching clauses. Possible option values are warning (the usual default) and silent (not recom-
mended).

always_true_or false goals(Option) Controls the printing of warnings for goals that are always true or
false. Possible option values are warning (the usual default) and silent (not recommended).

lambda_variables (Option) Controls the printing of lambda variable related warnings. Possible option values
are warning (the usual default) and silent (not recommended).

suspicious_calls (Option) Controls the printing of suspicious call warnings. Possible option values are
warning (the usual default) and silent (not recommended).

redefined_built_ins (Option) Controls the Logtalk and Prolog built-in predicate redefinition warnings.
Possible option values are warning (the usual default) and silent. Warnings about redefined Prolog built-
in predicates are often the result of running a Logtalk application on several Prolog compilers as each Prolog
compiler defines its set of built-in predicates.

singleton_variables (Option) Controls the singleton variable warnings. Possible option values are
warning (the usual default) and silent (not recommended).

underscore_variables (Option) Controls the interpretation of variables that start with an underscore (ex-
cluding the anonymous variable) that occur once in a term as either don’t care variables or singleton variables.
Possible option values are dont_care and singletons (the usual default). Note that, depending on your
Prolog compiler, the read_term/3 built-in predicate may report variables that start with an underscore as
singleton variables. There is no standard behavior, hence this option.

Optional features compilation flags

complements (Option) Allows objects to be compiled with support for complementing categories turned off in
order to improve performance and security. Possible option values are a1l 1low (allow complementing categories
to override local object predicate declarations and definitions), restrict (allow complementing categories to
add predicate declarations and definitions to an object but not to override them), and deny (ignore complement-
ing categories; the usual default). This option can be used on a per-object basis. Note that changing this option
is of no consequence for objects already compiled and loaded.

dynamic_declarations (Option) Allows objects to be compiled with support for dynamic declaration of
new predicates turned off in order to improve performance and security. Possible option values are allow and
deny (the usual default). This option can be used on a per-object basis. Note that changing this option is of no
consequence for objects already compiled and loaded. This option is only checked when sending an asserta/I
or assertz/1 message to an object. Local asserting of new predicates is always allowed.

events (Option) Allows message sending calls to be compiled with or without event-driven programming sup-
port. Possible option values are allow and deny (the usual default). Objects (and categories) compiled with
this option set to deny use optimized code for message-sending calls that does not trigger events. As such, this
option can be used on a per-object (or per-category) basis. Note that changing this option is of no consequence
for objects already compiled and loaded.

context_switching calls (Option) Allows context switching calls (<</2) to be either allowed or denied.
Possible option values are allow and deny. The default flag vale is allow. Note that changing this option is
of no consequence for objects already compiled and loaded.

Back-end Prolog compiler and loader flags

prolog_compiler (Flags) List of compiler flags for the generated Prolog files. The valid flags are specific to
the used Prolog backend compiler. The usual default is the empty list. These flags are passed to the backend

90 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Prolog compiler built-in predicate that is responsible for compiling to disk a Prolog file. For Prolog compilers
that don’t provide separate predicates for compiling and loading a file, use instead the prolog_loader flag.

prolog_loader (Flags) List of loader flags for the generated Prolog files. The valid flags are specific to the
used Prolog backend compiler. The usual default is the empty list. These flags are passed to the backend Prolog
compiler built-in predicate that is responsible for loading a (compiled) Prolog file.

Other flags

scratch_directory (Directory) Sets the directory to be used to store the temporary files generated when
compiling Logtalk source files. This directory can be specified using an atom or using library notation. The
directory must always end with a slash. The default value is a sub-directory of the source files directory, either
'./lgt_tmp/" or './.lgt_tmp/"' (depending on the backend Prolog compiler and operating-system).
Relative directories must always start with ' . /' due to the lack of a portable solution to check if a path is
relative or absolute.

report (Option) Controls the default printing of messages. Possible option values are on (by usual default, print
all messages that are not intercepted by the user), warnings (only print warning and error messages that are
not intercepted by the user), and o £ £ (do not print any messages that are not intercepted by the user).

code_prefix (Character) Enables the definition of prefix for all functors of Prolog code generated by the
Logtalk compiler. The option value must be a single character atom. Its default value is '$'. Specifying a
code prefix provides a way to solve possible conflicts between Logtalk compiled code and other Prolog code.
In addition, some Prolog compilers automatically hide predicates whose functor start with a specific prefix such
as the character $. Although this is not a read-only flag, it should only be changed at startup time and before
loading any source files.

optimize (Option) Controls the compiler optimizations. Possible option values are on (used by default for
deployment) and of £ (used by default for development). Compiler optimizations include the use of static
binding whenever possible, the removal of redundant calls to true/0 from predicate clauses, the removal
of redundant unifications when compiling grammar rules, and inlining of predicate definitions with a single
clause that links to a local predicate, to a plain Prolog built-in (or foreign) predicate, or to a Prolog module
predicate with the same arguments. Care should be taken when developing applications with this flag turned
on as changing and reloading a file may render static binding optimizations invalid for code defining in other
loaded files. Turning on this flag automatically turns off the debug flag.

source_data (Option) Defines how much information is retained when compiling a source file. Possible option
values are on (the usual default for development) and of£. With this flag set to on, Logtalk will keep the
information represented using documenting directives plus source location data (including source file names
and line numbers). This information can be retrieved using reflection and is useful for documenting, debugging,
and integration with third-party development tools. This flag can be turned off in order to generate more compact
code.

debug (Option) Controls the compilation of source files in debug mode (the Logtalk default debugger can only
be used with files compiled in this mode). Also controls, by default, printing of debug> and debug (Topic)
messages. Possible option values are on and of £ (the usual default). Turning on this flag automatically turns
off the optimize flag.

reload (Option) Defines the reloading behavior for source files. Possible option values are skip (skip
loading of already loaded files; this value can be used to get similar functionality to the Prolog directive
ensure_loaded/1 but should be used only with fully debugged code), changed (the usual default; reload
files only when they are changed since last loaded provided that the any explicit flags and the compilation mode
are the same as before), and always (always reload files).

relative_to (Directory) Defines a base directory for resolving relative source file paths. The default value is
the directory of the source file being compiled.

1.15. Writing, running, and debugging applications 91

The Logtalk Handbook, Release v3.21.0

hook (Object) Allows the definition of compiler hooks that are called for each term read form a source file and
for each compiled goal. This option specifies an object (which can be the pseudo-object user) implementing the
expanding built-in protocol. The hook object must be compiled and loaded when this option is used. It’s also
possible to specify a Prolog module instead of a Logtalk object but the module must be pre-loaded and its identi-
fier must be different from any object identifier. The object is expected to define clauses for the term_expansion/2
and goal_expansion/2 predicates. In the case of the term_expansion/2 predicate, the first argument is the
term read form the source file while the second argument returns a list of terms corresponding to the expansion
of the first argument. In the case of the goal_expansion/2 predicate, the second argument should be a
goal resulting from the expansion of the goal in the first argument. The predicate goal_expansion/2 is
recursively called on the expanded goal until a fixed point is reached. Care must be taken to avoid compilation
loops.

clean (Option) Controls cleaning of the intermediate Prolog files generated when compiling Logtalk source files.
Possible option values are o f £ and on (the usual default). When turned on, this flag also forces recompilation of
all source files, disregarding any existing intermediate files. Thus, it is strong advisable to turn on this flag when
switching backend Prolog compilers as the intermediate files generated by the compilation of source files may
not be portable (due to differences in the implementation of the standard write_canonical/2 predicate).

User-defined flags

Logtalk provides a create_logtalk_flag/3 predicate that can be used for defining new flags.

Reloading and smart compilation of source files

As a general rule, reloading source files should never occur in production code and should be handled with care in
development code. Reloading a Logtalk source file usually requires reloading the intermediate Prolog file that is
generated by the Logtalk compiler. The problem is that there is no standard behavior for reloading Prolog files. For
static predicates, almost all Prolog compilers replace the old definitions with the new ones. However, for dynamic
predicates, the behavior depends on the Prolog compiler. Most compilers replace the old definitions but some of
them simply append the new ones, which usually leads to trouble. See the compatibility notes for the backend Prolog
compiler you intend to use for more information. There is an additional potential problem when using multi-threading
programming. Reloading a threaded object does not recreate from scratch its old message queue, which may still be
in use (e.g. threads may be waiting on it).

When using library entities and stable code, you can avoid reloading the corresponding source files (and, therefore,
recompiling them) by setting the reload compiler flag to skip. For code under development, you can turn off the
clean flag to avoid recompiling files that have not been modified since last compilation (assuming that backend Prolog
compiler that you are using supports retrieving of file modification dates). You can disable deleting the intermediate
files generated when compiling source files by changing the default flag value in your settings file, by using the
corresponding compiler flag with the compiling and loading built-in predicates, or, for the remaining of a working
session, by using the call:

| ?—- set_logtalk_flag(clean, off).

Some caveats that you should be aware. First, some warnings that might be produced when compiling a source file will
not show up if the corresponding object file is up-to-date because the source file is not being (re)compiled. Second, if
you are using several Prolog compilers with Logtalk, be sure to perform the first compilation of your source files with
smart compilation turned off: the intermediate Prolog files generated by the Logtalk compiler may be not compatible
across Prolog compilers or even for the same Prolog compiler across operating systems (e.g. due to the use of different
character encodings or end-of-line characters).

92 Chapter 1. User Manual

https://logtalk.org/library/user_0.html#user-0
https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.21.0

Using Logtalk for batch processing

If you use Logtalk for batch processing, you probably want to turn off the report flag to suppress all messages of
type banner, comment, comment (_), warning, and warning (_) that are normally printed. Note that error
messages and messages providing information requested by the user will still be printed.

Optimizing performance

The default compiler flag settings are appropriated for the development but not necessarily for the deployment of
applications. To minimize the generated code size, turn the source_data flag off. To optimize runtime performance,
turn on the optimize flag. Your chosen backend Prolog compiler may also provide performance related flags; check its
documentation.

Pay special attention to file compilation/loading order. Whenever possible, compile/load your files taking into account
file dependencies to enable static binding optimizations. The easiest way to find the dependencies and thus the best
compilation/loading order is to use the diagrams tool to generate a file dependency diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic predicates
cannot be avoided, try to make them private. Declaring a dynamic predicate also as a private predicate allows the
compiler to optimize local calls to the database methods (e.g. assertz/I and retract/I) that handle the predicate.

Sending a message to self implies dynamic binding but there are often cases where ::// is misused to call an imported
or inherited predicate that is never going to be redefined in a descendant. In these cases, a super call, /1, can be used
instead with the benefit of often enabling static binding. Most of the guidelines for writing efficient Prolog code also
apply to Logtalk code. In particular, define your predicates to take advantage of first-argument indexing. In the case
of recursive predicates, define them as tail-recursive predicates whenever possible.

1.15.3 Debugging applications

The Logtalk distribution includes in its t ools directory a command-line debugger, implemented as a Logtalk appli-
cation. It can be loaded by typing:

| ?- logtalk_load(debugger (loader)) .

This tool implements debugging features similar to those found on most Prolog systems. There are some differences,
however, between the usual implementation of Prolog debuggers and the current implementation of the Logtalk debug-
ger that you should be aware. First, unlike some Prolog debuggers, the Logtalk debugger is not built-in but a regular
Logtalk application using documented debugging hook predicates. This translates to a different, although similar, set
of debugging features when compared with some of the more sophisticated Prolog debuggers. Second, debugging
is only possible for entities compiled in debug mode. When compiling an entity in debug mode, Logtalk decorates
clauses with source information to allow tracing of the goal execution. Third, implementation of spy points allows the
user to specify the execution context for entering the debugger. This feature is a consequence of the encapsulation of
predicates inside objects.

Compiling source files and entities in debug mode

Compilation of source files in debug mode is controlled by the debug compiler flag. The default value for this flag,
usually of £, is defined in the adapter files. Its default value may be changed at runtime by calling:

| ?- set_logtalk_flag(debug, on).

In alternative, if we want to compile only some source files in debug mode, we may instead write:

1.15. Writing, running, and debugging applications 93

The Logtalk Handbook, Release v3.21.0

| ?- logtalk_load([filel, file2, ...], [debug(on)]).

The logtalk_make/I built-in predicate can also be used to recompile all loaded files (that were loaded in normal mode)
in debug mode:

| ?- logtalk_make (debug) .

With most backend Prolog compilers, the {+d} top-level shortcut can also be used.

The clean compiler flag should be turned on whenever the debug flag is turned on at runtime. This is necessary because
debug code would not be generated for files previously compiled in normal mode if there are no changes to the source
files.

After loading the debugger, we may check (or enumerate by backtracking), all loaded entities compiled in debug mode
as follows:

| ?- debugger::debugging (Entity) .

To compile only a specific entity in debug mode, use the ser_logtalk_flag/2 directive inside the entity.

Logtalk Procedure Box model

Logtalk uses a Procedure Box model similar to those found on most Prolog compilers. The traditional Prolog procedure
box model defines four ports (call, exit, redo, and fail) for describing control flow when a predicate clause is used
during program execution:

call

predicate call
exit

success of a predicate call
redo

backtracking into a predicate
fail

failure of a predicate call

Logtalk, as found on some recent Prolog compilers, adds a port for dealing with exceptions thrown when calling a
predicate:

exception
predicate call throws an exception

In addition to the ports described above, Logtalk adds two more ports, fact and rule, which show the result of the
unification of a goal with, respectively, a fact and a rule head:

fact

unification success between a goal and a fact
rule

unification success between a goal and a rule head

94 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Following Prolog tradition, the user may define for which ports the debugger should pause for user interaction by
specifying a list of leashed ports. For example:

’I ?— debugger::leash([call, exit, faill]).

Alternatively, the user may use an atom abbreviation for a pre-defined set of ports. For example:

’I ?— debugger::leash(loose) .

The abbreviations defined in Logtalk are similar to those defined on some Prolog compilers:

none
[]
loose
[fact, rule, call]
half
[fact, rule, call, redo]
tight
[fact, rule, call, redo, fail, exception]
full
[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

Defining spy points

Logtalk spy points can be defined by simply stating which file line numbers or predicates should be spied, as in most
Prolog debuggers, or by fully specifying the context for activating a spy point. In the case of line number spy points
(also known as breakpoints), the line number must correspond to the first line of an entity clause. To simplify the
definition of line number spy points, these are specified using the entity identifier instead of the file name (as all
entities share a single namespace, an entity can only be defined in a single file).

Defining line number and predicate spy points

Line number and predicate spy points are specified using the debuuger spy/1 predicate. The argument can be a
breakpoint (expressed as a Entity-Line pair), a predicate indicator (Name/Arity), or a list of spy points. For
example:

| ?- debugger: :spy (person-42).

Spy points set.
yes

| ?- debugger::spy(foo/2).

Spy points set.
yes

| ?- debugger::spy([foo/4, bar/1]).

(continues on next page)

1.15. Writing, running, and debugging applications 95

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

Spy points set.
yes

Line numbers and predicate spy points can be removed by using the debugger nospy /1 predicate. The argument can
be a spy point, a list of spy points, or a non-instantiated variable in which case all spy points will be removed. For

example:

| ?- debugger::nospy(_) .

All matching predicate spy points removed.
yes

Defining context spy points

A context spy point is a tuple describing a message execution context and a goal:

(Sender, This, Self, Goal)

The debugger is evoked whenever the execution context is true and when the spy point goal unifies with the goal
currently being executed. Variable bindings resulting from the unification between the current goal and the goal
argument are discarded. The user may establish any number of context spy points as necessary. For example, in order
to call the debugger whenever a predicate defined on an object named foo is called we may define the following spy

point:

| ?- debugger::spy(_, foo, _, _).

Spy point set.
yes

For example, we can spy all calls to a foo/2 predicate by setting the condition:

| ?- debugger::spy(_, _, _, fool(_, _)).

Spy point set.
yes

The debugger nospy/ 4 predicate may be used to remove all matching spy points. For example, the call:

| ?—- debugger::nospy(_, _, foo, _).

All matching context spy points removed.
yes

will remove all context spy points where the value of se/f matches the atom foo.

Removing all spy points

We may remove all line number, predicate, and context spy points by using the debugger nospyall/0 predicate:

| ?— debugger::nospyall.

All line number spy points removed.

(continues on next page)

96 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

All predicate spy points removed.
All context spy points removed.
yes

Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug mode. To start the debugger in trace mode, write:

| ?- debugger::trace.

yes

Note that, when tracing, spy points will be ignored. While tracing, the debugger will pause for user input at each
leashed port, printing an informative message with the port name and the current goal. Before the port number, when
a spy point is set for the current clause or goal, the debugger will print a # character for line number spy points, a +
character for predicate spy points, and a * character for context spy points. The debugger also provides determinism
information by prefixing the exit port with a % character when a call succeeds with choice-points pending. After
the port name, the debugger prints the goal invocation number. This invocation number is unique and can be used to
correlate the port trace messages.

To stop tracing and turning off the debugger, write:

| ?— debugger::notrace.

yes

Debugging using spy points

Tracing a program execution may generate large amounts of debugging data. Debugging using spy points allows the
user to concentrate its attention in specific points of its code. To start a debugging session using spy points, write:

| ?- debugger::debug.

yes

At the beginning of a port description, the debugger will print a #, +, or » character before the current goal if there is,
respectively, a line number, a predicate, or a context spy point defined.

To stop the debugger, write:

| ?- debugger::nodebug.

yes

Note that stopping the debugger does not remove any defined spy points.

Debugging commands

The debugger pauses at leashed ports when tracing or when finding a spy point for user interaction. The commands
available are as follows:

c — creep go on; you may use the spacebar, return, or enter keys in alternative

1 —leap continues execution until the next spy point is found

1.15. Writing, running, and debugging applications 97

The Logtalk Handbook, Release v3.21.0

s — skip skips debugging for the current goal; valid at call, redo, and unification ports

g — quasi-skip skips debugging until returning to the current goal or reaching a spy point; valid at call and redo ports
r —retry retries the current goal but side-effects are not undone; valid at the fail port

j — jump reads invocation number and continues execution until a port is reached for that number

z — zap reads port name and continues execution until that port is reached reads negated port name and continues
execution until a port other than the negated port is reached

i —ignore ignores goal, assumes that it succeeded; valid at call and redo ports

£ — fail forces backtracking; may also be used to convert an exception into a failure
n — nodebug turns off debugging

@ — command; ! can be used in alternative reads and executes a query

b — break suspends execution and starts new interpreter; type end_of_file to terminate
a — abort returns to top level interpreter

Q — quit quits Logtalk

p — print writes current goal using the print/1 predicate if available

d — display writes current goal without using operator notation

w — write writes current goal quoting atoms if necessary

$ — dollar outputs the compiled form of the current goal (for low-level debugging)
x — context prints execution context

. — file prints file, entity, predicate, and line number information at an unification port
e — exception prints exception term thrown by the current goal

= — debugging prints debugging information

< — write depth sets the write term depth (set to O to reset)

* — add adds a context spy point for the current goal

/ — remove removes a context spy point for the current goal

+ — add adds a predicate spy point for the current goal

— —remove removes a predicate spy point for the current goal

— add adds a line number spy point for the current clause

| — remove removes a line number spy point for the current clause

h — condensed help prints list of command options

? — extended help prints list of command options

Context-switching calls

Logtalk provides a control construct, <</2, which allows the execution of a query within the context of an object.
Common debugging uses include checking an object local predicates (e.g. predicates representing internal dynamic
state) and sending a message from within an object. This control construct may also be used to write unit tests.

Consider the following toy example:

98 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

:— object (broken) .

:— public(a/l).

a(hA) := b(r, B), c(B).
b(l, 2). b(2, 4). b(3, 6)
c(3).

:— end_object.

Something is wrong when we try the object public predicate, a/1:

| ?- broken::a(A).

no

For helping diagnosing the problem, instead of compiling the object in debug mode and doing a trace of the query to
check the clauses for the non-public predicates, we can instead simply type:

| ?-— broken << c(C).

The <</2 control construct works by switching the execution context to the object in the first argument and then
compiling and executing the second argument within that context:

| ?— broken << (self(Self), sender (Sender), this(This)).
Self = broken
Sender = broken

This = broken

yes

As exemplified above, the <</ 2 control construct allows you to call an object local and private predicates. However,
it is important to stress that we are not bypassing or defeating an object predicate scope directives. The calls take place
within the context of the specified object, not within the context of the object making the <</ 2 call. Thus, the <</2
control construct implements a form of execution-context switching.

The availability of the <</2 control construct is controlled by the context_switching_calls compiler flag (its default
value is defined in the adapter files of the backend Prolog compilers).

Using compilation hooks and term expansion for debugging

It is possible to use compilation hooks and the term expansion mechanism for conditional compilation of debugging
goals. Assume that we chose the predicate debug/1 to represent debug goals. For example:

member (Head, [Head| _]) :—

debug ((write ('Base case: '), writeq(member (Head, [Head| _1)))).
member (Head, [_| Taill]) :-

debug ((write ('Recursive case: '), writeq(member (Head, Tail)))),

member (Head, Tail).

When debugging, we want to call the argument of the predicate debug/1. This can be easily accomplished by
defining a hook object containing the following definition for goal_expansion/2:

1.15. Writing, running, and debugging applications 99

The Logtalk Handbook, Release v3.21.0

’goalfexpansion(debug(]g;), Goal).

When not debugging, we can use a second hook object to discard the debug/1 calls by defining the predicate
goal_expansion/2 as follows:

’goal_expansion(debug(f), true) .

The Logtalk compiler automatically removes any redundant calls to the built-in predicate t rue /0 when compiling
object predicates.

Debugging messages

Callstothe logtalk: :print_message/ 3 predicate where the message kind is either debug or debug (_) are
only printed, by default, when the debug flag is turned on. Note that using these messages does not require compiling
the code in debug mode, only turning on the flag. To avoid having to define message_tokens//2 grammar rules for
translating each debug message, Logtalk provides default tokenization for four meta-messages that cover the most
common cases:

@Message By default, the message is printed as passed to the write/1 predicate followed by a newline.

Key-Value By default, the message is printed as Key: Value followed by a newline. The value is printed as
passed to the writeq/1 predicate.

List By default, the list items are printed indented one per line. The items are preceded by a dash and printed as
passed to the writeqg/1 predicate.

Title::List By default, the title is printed followed by a newline and the indented list items, one per line. The
items are preceded by a dash and printed as passed to the writeq/1 predicate.

These print messages goals can always be combined with hooks as described in the previous section to remove them
in production ready code. Some simple examples of using these meta-messages:

| ?- logtalk::print_message (debug, core, @'Phase 1 completed').
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk::print_message (debug, core, @'Phase 1 completed').
>>> Phase 1 completed
yes

| ?- logtalk::print_message (debug, core, answer—-42).
>>> answer: 42

yes

| ?- logtalk::print_message (debug, core, [arthur,ford,marvin]).

>>> — arthur
>>> - ford
>>> — marvin
yes

| ?- logtalk::print_message (debug, core, names::[arthur, ford,marvin]) .
>>> names:

>>> - arthur

>>> — ford

(continues on next page)

100 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

>>> - marvin
yes

1.16 Prolog integration and migration guide

An application may include plain Prolog files, Prolog modules, and Logtalk objects. This is a perfectly valid way of
developing a complex application and, in some cases, it might be the most appropriated solution. Modules may be
used for legacy code or when a simple encapsulation mechanism is adequate. Logtalk objects may be used when more
powerful encapsulation, abstraction, and reuse features are necessary.

Logtalk supports the compilation of source files containing both plain Prolog and Prolog modules. This guide provides
tips for integrating and migrating plain Prolog code and Prolog module code to Logtalk. Step-by-step instructions are
provided for encapsulating plain Prolog code in objects, converting Prolog modules into objects, and compiling and
reusing Prolog modules as objects from inside Logtalk. An interesting application of the techniques described in this
guide is a solution for running a Prolog application which uses modules on a Prolog compiler with no module system.
The wrapper tool can be used to help in migrating Prolog code.

1.16.1 Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with Logtalk code. The Logtalk compiler simply copies
the plain Prolog code as-is to the generated Prolog file. With Prolog modules, it is assumed that the module code starts
with a module/1-2 directive and ends at the end of the file. There is no module ending directive which would
allowed us to define more than one module per file. In fact, most if not all Prolog module systems always define a
single module per file. Some of them mandate that the module/1-2 directive be the first term on a source file. As
such, when the Logtalk compiler finds a module/1-2 directive, it assumes that all code that follows until the end of
the file belongs to the module.

1.16.2 Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one defining a few top-level predicates and auxiliary
predicates that are not meant to be directly called by the user. Encapsulating plain Prolog code in objects allows us to
make clear the different roles of each predicate, to hide implementation details, to prevent auxiliary predicates from
being called outside the object, and to take advantage of Logtalk advanced code encapsulating and reusing features.

Encapsulating Prolog code using Logtalk objects is simple. First, for each source file, add an opening object directive,
object/1-5, to the beginning of the file and an ending object directive, end_object/0, to end of the file. Choose an
object name that reflects the purpose of source file code (this is a good opportunity for code refactoring if necessary).
Second, add public/I predicate directives for the top-level predicates that are used directly by the user or called from
other source files. Third, we need to be able to call from inside an object predicates defined in other source files/objects.
The easiest solution, which has the advantage of not requiring any changes to the predicate definitions, is to use the
uses/2 directive. If your Prolog compiler supports cross-referencing tools, you may use them to help you make sure
that all calls to predicates on other source files/objects are listed in the uses/2 directives. The Logtalk wrapper tool
can also help in detecting cross predicate calls. Compiling the resulting objects with the Logtalk unknown_predicates
and portability flags set to warning will help you identify calls to predicates defined on other converted source files
and possible portability issues.

1.16. Prolog integration and migration guide 101

The Logtalk Handbook, Release v3.21.0

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same predicate are spread among several source files. When
encapsulating plain Prolog code that uses multifile predicates, is often the case that the clauses of the multifile predi-
cates get spread between different objects and categories but conversion is straight-forward. In the Logtalk object (or
category) holding the multifile predicate primary declaration, add a predicate scope directive and a multifile/I direc-
tive. In all other objects (or categories) defining clauses for the multifile predicate, add a multifile/1 directive
and predicate clauses using the format:

:— multifile(Entity::Name/Arity) .

See the User Manual section on the multifile/1 predicate directive for more information. An alternative solution
is to simply keep the clauses for the multifile predicates as plain Prolog code and define, if necessary, a parametric
object to encapsulate all predicates working with the multifile predicate clauses. For example, assume the following
multifile/1 directive:

1ty (Name, District, Population, Neighbors)

-~ multifile (city/4).

We can define a parametric object with city/4 as its identifier:

:— object (city(_Name, _District, Population, _Neighbors)).

:— end_object.

This solution is preferred when the multifile predicates are used to represent large tables of data. See the section on
Parametric objects for more details.

1.16.3 Converting Prolog modules into objects

Converting Prolog modules into objects may allow an application to run on a wider range of Prolog compilers, over-
coming compatibility problems. Some Prolog compilers don’t support a module system. Among those Prolog com-
pilers which support a module system, the lack of standardization leads to several issues, specially with semantics,
operators, and meta-predicates. In addition, the conversion allows you to take advantage of Logtalk more powerful
abstraction and reuse mechanisms such as separation between interface from implementation, inheritance, parametric
objects, and categories.

Converting a Prolog module into an object is easy as long as the directives used in the module are supported by Logtalk
(see below). Assuming that this is the case, apply the following steps:

1. Convert the module module/1 directive into an opening object directive, object/I-5, using the module name as
the object name. For module/2 directives apply the same conversion and convert the list of exported predicates
into Logtalk public/I predicate directives.

Add a closing object directive, end_object/0, at the end of the module code.
Convert any export /1 directives into public/1 predicate directives.

Convert any use_module/1 directives into use_module/2 directives (see next section).

A

Convert any use_module/2 directives referencing other modules also being converted to objects into
Logtalk uses/2 directives. If the referenced modules are not being converted into objects, simply keep the
use_module/2 directives unchanged.

102 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

6. Convert any meta_predicate/1 directives into Logtalk meta_predicate/I directives by replacing the mod-
ule meta-argument indicator, :, with the Logtalk meta-argument indicator, 0. Closures must be represented
using an integer denoting the number of additional arguments that will be appended to construct a goal. Argu-
ments which are not meta-arguments are represented by the » character.

7. Convert any explicit qualified calls to module predicates to messages by replacing the : /2 operator with the ::/2
message sending operator, assuming that the referenced modules are also being converted into objects. Calls
in the pseudo-module user can simply be encapsulated using the {//I Logtalk external call control construct.
You can also use instead an uses/2 directive where the first argument would be the atom user and the second
argument a list of all external predicates. This alternative has the advantage of not requiring changes to the code
making the predicate calls.

8. If your module uses the database built-in predicates to implement module local mutable state using dynamic
predicates, add both private/I and dynamic/I directives for each dynamic predicate.

9. If your module declares or defines clauses for multifile module predicates, replace the : /2 functor by : :/
2 in the multifile/1 directives and in the clause heads (assuming that all modules defining the multifile
predicates are converted into objects; if that is not the case, just keep the multifile/1 directives and the
clause heads as-is).

10. Compile the resulting objects with the Logtalk unknown_predicates, and portability flags set to warning to
help you locate possible issues and calls to proprietary Prolog built-in predicates and to predicates defined on
other converted modules. In order to improve code portability, check the Logtalk library for possible alternatives
to the use of proprietary Prolog built-in predicates.

Before converting your modules to objects, you may try to compile them first as objects (using the logtalk_compile/]
Logtalk built-in predicates) to help identify any issues that must be dealt with when doing the conversion to objects.
Note that Logtalk supports compiling Prolog files as Logtalk source code without requiring changes to the file name
extensions.

1.16.4 Compiling Prolog modules as objects

An alternative to convert Prolog modules into objects is to just compile the Prolog source files using the
logtalk_load/1-2 and logtalk_compile/1-2 predicates (set the Logtalk portability flag set to warning
to help you catch any unnoticed cross-module predicate calls). This allows you to reuse existing module code as
objects. This has the advantage of requiring little if any code changes. There are, however, some limitations that
you must be aware. These limitations are a consequence of the lack of standardization of Prolog module systems and
consequent proliferation of proprietary extensions.

Supported module directives

Currently, Logtalk supports the following module directives:
module/1 The module name becomes the object name.

module/2 The module name becomes the object name. The exported predicates become public object predicates.
The exported grammar rule non-terminals become public grammar rule non-terminals. The exported operators
become public object operators but are not active elsewhere when loading the code.

use_module/2 This directive is compiled as a Logtalk uses/2 directive in order to ensure correct compilation of
the module predicate clauses. The first argument of this directive must be the module name (an atom), not a
module file specification (the adapter files attempt to use the Prolog dialect level term-expansion mechanism
to find the module name from the module file specification). Note that the module is not automatically loaded
by Logtalk (as it would be when compiling the directive using Prolog instead of Logtalk; the programmer may
also want the specified module to be compiled as an object). The second argument must be a predicate indicator

1.16. Prolog integration and migration guide 103

The Logtalk Handbook, Release v3.21.0

(Name/Arity), a grammar rule non-terminal indicator (Name //Arity), a operator declaration, or a list of
predicate indicators, grammar rule non-terminal indicators, and operator declarations.

export /1 Exported predicates are compiled as public object predicates. The argument must be a predicate indicator
(Name/Arity), a grammar rule non-terminal indicator (Name//Arity), an operator declaration, or a list of
predicate indicators, grammar rule non-terminal indicators, and operator declarations.

reexport/2 Reexported predicates are compiled as public object predicates. The first argument is the module
name. The second argument must be a predicate indicator (Name /Arity), a grammar rule non-terminal in-
dicator (Name //Arity), an operator declaration, or a list of predicate indicators, grammar rule non-terminal
indicators, and operator declarations.

meta_predicate/1 Module meta-predicates become object meta-predicates. Only predicate arguments marked
as goals or closures (using an integer) are interpreted as meta-arguments. In addition, Prolog module meta-
predicates and Logtalk meta-predicates don’t share the same explicit-qualification calling semantics: in Logtalk,
meta-arguments are always called in the context of the sender.

A common issue when compiling modules as objects is the use of the atoms dynamic, discontiguous, and
multifile as operators in directives. For better portability avoid this usage. For example, write:

’ :— dynamic([foo/1, bar/2]).

instead of:

’:f dynamic foo/1l, bar/2.

Another common issue is missing meta_predicate/1,dynamic/1,discontiguous/l,andmultifile/
1 predicate directives. The Logtalk compiler supports detection of missing directives (by setting its missing_directives
flag to warning).

When compiling modules as objects, you probably don’t need event support turned on. You may use the events
compiler flag to deny with the Logtalk compiling and loading built-in methods for a small performance gain for the
compiled code.

Current limitations and workarounds

The reexport/1 and use_module/1 directives are not directly supported by the Logtalk compiler. But most
Prolog adapter files provide support for compiling these directives using Logtalk’s first stage of its term-expansion
mechanism. Nevertheless, these directives can be converted, respectively, into reexport /2 and use_module/2
directives by finding which predicates exported by the specified modules are reexported or imported into the module
containing the directive. Finding the names of the imported predicates that are actually used is easy. First, comment out
the use_module/1 directives and compile the file (making sure that the unknown_predicates compiler flag is set to
warning). Logtalk will print a warning with a list of predicates that are called but never defined. Second, use these list
to replace the reexport /1 and use_module/1 directives by, respectively, reexport /2 and use_module/2
directives. You should then be able to compile the modified Prolog module as an object.

Although Logtalk supports term and goal expansion mechanisms, the semantics are different from similar mechanisms
found in some Prolog compilers. In particular, Logtalk does not support defining term and goal expansions clauses in
a source file for expanding the source file itself. Logtalk forces a clean separation between expansions clauses and the
source files that will be subject to source-to-source expansions by using hook objects.

1.16.5 Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard, directives and predicates that may be used in both plain code
and module code. Non-standard Prolog built-in predicates are usually not problematic, as Logtalk is usually able to
identify and compile them correctly (but see the notes on built-in meta-predicates for possible caveats). However,

104 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

Logtalk will generate compilation errors on source files containing proprietary directives unless you first specify how
the directives should be handled. Several actions are possible on a per-directive basis: ignoring the directive (i.e.
do not copy the directive, although a goal can be proved as a consequence), rewriting and copy the directive to the
generated Prolog files, or rewriting and recompiling the resulting directive. To specify these actions, the adapter
files contain clauses for the ' $1gt_prolog_term_expansion'/2 predicate. For example, assume that a given
Prolog compiler defines a comment /2 directive for predicates using the format:

:— comment (foo/2, "Brief description of the predicate").

We can rewrite this predicate into a Logtalk info/2 directive by defining a suitable clause for the
'$lgt_prolog_term_expansion'/2 predicate:

'$Slgt_prolog_term_expansion' (
comment (F/A, String),
info (F/A, [comment is Atom])
) -
atom codes (Atom, String).

This Logtalk feature can be used to allow compilation of legacy Prolog code without the need of changing the sources.
When used, is advisable to set the portability compiler flag to warning in order to more easily identify source files
that are likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded after triggering a side effect:

'$lgt_prolog_term_expansion' (
load_foreign_files(Files, Libs, InitRoutine),
[]
) -
load_foreign_files(Files, Libs, InitRoutine) .

In this case, although the directive is not copied to the generated Prolog file, the foreign library files are loaded as a
side effect of the Logtalk compiler calling the ' $1gt_prolog_term_expansion'/2 hook predicate.

1.16.6 Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by simply using explicit module qualification,
i.e. by writing Module:Goal or Goal@Module (depending on the module system). Logtalk also supports the use
of use_module/ 2 directives in object and categories (with the restriction that the first argument of the directive must
be the actual module name and not the module file name or the module file path). In this case, these directives are
parsed in a similar way to Logtalk uses/2 directives, with calls to the specified module predicates being automatically
translated to Module:Goal calls. For example, assume a clpfd Prolog module implementing a finite domain
constraint solver. You could write:

:— object (puzzle).
:— public(puzzle/1l).

:— use_module (clpfd, [
all different/1, ins/2, label/1,
(#=)/2, (#\=)/2,
op (700, xfx, #=), op(700, xfx, #\=)
1).

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :—
vars = [S,E,N,D,M,0O,R,Y],
Vars ins 0..9,

(continues on next page)

1.16. Prolog integration and migration guide 105

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

all_different (Vars),
Sx1000 + E*«100 + N%x10 + D +
M%*1000 + O0%x100 + R*10 + E #=
Mx10000 + O*1000 + Nx100 + Ex10 + Y,
M #\= 0, S #\= 0,
label ([M,O,N,E,Y]) .

:— end_object.

As a general rule, the Prolog modules should be loaded (e.g. in the auxiliary Logtalk loader files) before compiling
objects that make use of module predicates. Moreover, the Logtalk compiler does not generate code for the automatic
loading of modules referenced in use_module/1-2 directives. This is a consequence of the lack of standardization
of these directives, whose first argument can be a module name, a straight file name, or a file name using some kind
of library notation, depending on the backend Prolog compiler. Worse, modules are sometimes defined in files with
names different from the module names requiring finding, opening, and reading the file in order to find the actual
module name.

Logtalk supports the declaration of predicate aliases in use_module/2 directives used within object and categories.
For example, the ECLiPSe IC Constraint Solvers define a : : /2 variable domain operator that clashes with the Logtalk
: : /2 message sending operator. We can solve the conflict by writing:

:— use_module (ic, [(::)/2 as ins/2]).

With this directive, calls to the ins/2 predicate alias will be automatically compiled by Logtalk to calls to the : : /2
predicate in the i c module.

When calling Prolog module meta-predicates, the Logtalk compiler may need help to understand the corresponding
meta-predicate template. Despite some recent progress in standardization of the syntax of meta_predicate/1
directives and of the meta_predicate/1 property returned by the predicate_property/2 reflection predi-
cate, portability is still a problem. Thus, Logtalk allows the original meta_predicate/1 directive to be overridden
with a local one that Logtalk can make sense of. Note that the Logtalk library provides implementations of common
meta-predicates, which can be used in place of module meta-predicates.

Logtalk allows you to send a message to a module in order to call one of its predicates. This is usually not advised as it
implies a performance penalty when compared to just using the Module:Call notation. Moreover, this works only
if there is no object with the same name as the module you are targeting. This feature is necessary, however, in order to
properly support compilation of modules containing use_module/ 2 directives as objects. If the modules specified
in the use_module/2 directives are not compiled as objects but are instead loaded as-is by Prolog, the exported
predicates would need to be called using the Module:Call notation but the converted module will be calling them
through message sending. Thus, this feature ensures that, on a module compiled as an object, any predicate calling
other module predicates will work as expected either these other modules are loaded as-is or also compiled as objects.

1.16.7 Compiling Prolog module multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be defined in
other modules. This is accomplished by declaring the library predicate multifile and by explicitly prefixing predicate
clause heads with the library module identifier. For example:

:— multifile (clpfd:run_propagator/2).
clpfd:run_propagator (..., ...) :—

Logtalk supports the compilation of such clauses within objects and categories. While the clause head is compiled
as-is, the clause body is compiled in the same way as a regular object or category predicate, thus allowing calls to local
object or category predicates. For example:

106 Chapter 1. User Manual

The Logtalk Handbook, Release v3.21.0

:— object (...).

:— multifile (clpfd:run_propagator/2).
clpfd:run_propagator (..., ...) :—

:— end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates may
also be declared dynamic using the same Module : Name/Arity notation.

1.16. Prolog integration and migration guide 107

The Logtalk Handbook, Release v3.21.0

108 Chapter 1. User Manual

CHAPTER
TWO

REFERENCE MANUAL

2.1 Grammar

The Logtalk grammar is here described using Backus-Naur Form syntax. Non-terminal symbols in italics have the
definition found in the ISO Prolog Core standard. Terminal symbols are represented in a fixed width font and
between double-quotes.

2.1.1 Entities

entity ::=
object |
category |
protocol

2.1.2 Object definition

object ::=
begin_object_directive [object_terms | end_object_directive.

begin_object_directive ::=

113 T3k

:— object (” object_identifier [*“, ” object_relations |) .’

5

end_object_directive ::=

13

:— end_object.”

object_relations ::=
prototype_relations |
non_prototype_relations

prototype_relations ::=
prototype_relation |

[T3NEE]

prototype_relation “, ” prototype_relations

109

The Logtalk Handbook, Release v3.21.0

prototype_relation ::=
implements_protocols |
imports_categories |
extends_objects

non_prototype_relations ::=
non_prototype_relation |

[T3EEL)

non_prototype_relation ““, ” non_prototype_relations

non_prototype_relation ::=
implements_protocols |
imports_categories |
instantiates_classes |
specializes_classes

2.1.3 Category definition

category ::=
begin_category_directive [category_terms] end_category_directive.

begin_category_directive ::=

13 [T3NE1]

:— category (” category_identifier [¢, ” category_relations | “) .’

il

end_category_directive ::=

113

:— end_category.”

category_relations ::=
category_relation |

[T3NEE]

category_relation “, ” category_relations

category_relation ::=
implements_protocols |
extends_categories |
complements_objects

2.1.4 Protocol definition

protocol ::=
begin_protocol_directive [protocol_directives] end_protocol_directive.

begin_protocol_directive ::=

3 [T3NR1]

:— protocol (” protocol_identifier [¢, ” extends_protocols] ©) .”

110 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

end_protocol_directive ::=

113

:— end_protocol.”

2.1.5 Entity relations

extends_protocols ::=
“extends (” extended_protocols) ”’

extends_objects ::=
“extends (” extended_objects “)

extends_categories ::=
“extends (” extended_categories) ”

implements_protocols ::=
“implements (” implemented_protocols) ”

imports_categories ::=
“imports (” imported_categories)

instantiates_classes ::=
“instantiates (” instantiated_objects) ”

specializes_classes ::=

9

“specializes (” specialized_objects)

complements_objects ::=

29

“complements (7 complemented_objects)

Implemented protocols

implemented_protocols ::=
implemented_protocol |
implemented_protocol_sequence |
implemented_protocol_list

implemented_protocol ::=
protocol_identifier |
scope “: :” protocol_identifier

implemented_protocol_sequence ::=

2.1. Grammar 111

The Logtalk Handbook, Release v3.21.0

implemented_protocol |
implemented_protocol *“, ” implemented_protocol_sequence

implemented_protocol_list ::=

13

[implemented_protocol_sequence “]”

Extended protocols

extended_protocols ::=
extended_protocol |
extended_protocol_sequence |
extended_protocol_list

extended_protocol ::=
protocol_identifier |
scope “: :” protocol_identifier

extended_protocol_sequence ::=
extended_protocol |
extended_protocol “, ” extended_protocol_sequence

extended_protocol_list ::=

13

[extended_protocol_sequence “]”

Imported categories

imported_categories ::=
imported_category |
imported_category_sequence |
imported_category_list

imported_category ::=
category_identifier |
scope “: :” category_identifier

imported_category_sequence ::=
imported_category |

[T3NEE]

imported_category ““, ” imported_category_sequence

imported_category_list ::=

29

“[” imported_category_sequence]

112 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Extended objects

extended_objects ::=
extended_object |
extended_object_sequence |
extended_object_list

extended_object ::=
object_identifier |
scope “: :” object_identifier

extended_object_sequence ::=
extended_object |

T3]

extended_object “, ” extended_object_sequence

extended_object_list ::=

I

“[” extended_object_sequence “]

Extended categories

extended_categories ::=
extended_category |
extended_category_sequence |
extended_category_list

extended_category ::=
category_identifier |
scope “: :” category_identifier

extended_category_sequence ::=
extended_category |

[T3NR1]

extended_category “, ” extended_category_sequence

extended_category_list ::=

13

[extended_category_sequence “]”

Instantiated objects

instantiated_objects ::=
instantiated_object |
instantiated_object_sequence |
instantiated_object_list

2.1. Grammar 113

The Logtalk Handbook, Release v3.21.0

instantiated_object ::=
object_identifier |
scope “: :” object_identifier

instantiated_object_sequence ::=
instantiated_object

[T3NELE)

instantiated_object ““, ” instantiated_object_sequence |

instantiated_object_list ::=

113

[” instantiated_object_sequence “]”

Specialized objects

specialized_objects ::=
specialized_object |
specialized_object_sequence |
specialized_object_list

specialized_object ::=
object_identifier |
scope “: :” object_identifier

specialized_object_sequence ::=
specialized_object |

[T3NEE]

specialized_object ““, ” specialized_object_sequence

specialized_object_list ::=

13

[specialized_object_sequence “]”

Complemented objects

complemented_objects ::=
object_identifier |
complemented_object_sequence |
complemented_object_list

complemented_object_sequence ::=
object_identifier |

[T3NE1)

object_identifier ““, ” complemented_object_sequence

complemented_object_list ::=

113

[’ complemented_object_sequence “]”

114 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Entity and predicate scope

SCope =

“public” |
" |

“protected

“private”

2.1.6 Entity identifiers

entity_identifiers ::=
entity_identifier |
entity_identifier_sequence |
entity_identifier_list

entity_identifier ::=
object_identifier |
protocol_identifier |
category_identifier

entity_identifier_sequence ::=
entity_identifier |

[T3NE1]

entity_identifier *“, ” entity_identifier_sequence

entity_identifier_list ::=

113

[entity_identifier_sequence “]”

Object identifiers

object_identifiers ::=
object_identifier |
object_identifier_sequence |
object_identifier_list

object_identifier ::=
atom |

compound

object_identifier_sequence ::=
object_identifier |

[730E1]

object_identifier *“, ” object_identifier_sequence

object_identifier_list ::=
“[” object_identifier_sequence “]”

2.1. Grammar 115

The Logtalk Handbook, Release v3.21.0

Category identifiers

category_identifiers ::=
category_identifier |
category_identifier_sequence |
category_identifier_list

category_identifier ::=
atom |

compound

category_identifier_sequence ::=
category_identifier |

[T3NEE]

category_identifier ““, ” category_identifier_sequence

category_identifier_list ::=

29

“[” category_identifier_sequence “]

Protocol identifiers

protocol_identifiers ::=
protocol_identifier |
protocol_identifier_sequence |
protocol_identifier_list

protocol_identifier ::=
atom

protocol_identifier_sequence ::=
protocol_identifier |

[T3NE1)

protocol_identifier ““, ” protocol_identifier_sequence

protocol_identifier_list ::=

113

[protocol_identifier_sequence “]”

Module identifiers
module_identifier ::=

atom

2.1.7 Source file names

source_file_names ::=

116 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

source_file_name |
source_file_name_list

source_file_name ::=
atom |
library_source_file_name

library_source_file_name ::=

)

library_name “ (" atom)’

library_name ::=
atom

source_file_name_sequence ::=
source_file_name |

T3k

source_file_name “, ” source_file_name_sequence

source_file name_list ::=

113

[source_file_name_sequence “]”

2.1.8 Terms

Object terms

object_terms ::=
object_term |
object_term object_terms

object_term ::=
object_directive |
clause |
grammar_rule

Category terms

category_terms ::=
category_term |
category_term category_terms

category_term ::=
category_directive |
clause |

2.1. Grammar 117

The Logtalk Handbook, Release v3.21.0

grammar_rule

2.1.9 Directives

Source file directives

source_file directives ::=
source_file_directive |
source_file_directive source_file_directives

source_file directive ::=

13 Lt} |

:— encoding (" atom) .

T3]

“:— set_logtalk_flag (” atom*,” nonvar ‘) .

113

s7|

EE)

:— include (” source_file_name “) .
Prolog directives

Conditional compilation directives

conditional_compilation_directives ::=
conditional_compilation_directive |
conditional_compilation_directive conditional_compilation_directives

conditional_compilation_directive ::=
“:— 1if (" callable) .” |
“:— elif (" callable ““) .” |

”I

:— else.
“:— endif.”

Object directives

object_directives ::=
object_directive |
object_directive object_directives

object_directive ::=

:— initialization (” callable <) .” |
“:— built_in.”|

“:— threaded.”|

:— dynamic.” |

:— info (” entity_info_list “) .” |

T3]

:— set_logtalk_flag (” atom*,” nonvar) .” |

:— include (” source_file_name “) .” |
predicate_directives

118 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Category directives

category_directives ::=

category_directive |
category_directive category_directives

category_directive ::=

“:— built_in.”|

:— dynamic.”|

:— info (” entity_info_list *) .” |
:— set_logtalk_flag (” atom
:— include (” source_file_name)
predicate_directives

Protocol directives

protocol_directives ::=

protocol_directive |
protocol_directive protocol_directives

protocol_directive ::=

“:— built_in.”|

:— dynamic.” |

:— info (” entity_info_list “) .” |
:— set_logtalk_flag(” atom
:— 1include (” source_file_name “)
predicate_directives

Predicate directives

predicate_directives ::=

predicate_directive |
predicate_directive predicate_directives

predicate_directive ::=

alias_directive |
synchronized_directive |
uses_directive |
use_module_directive |
scope_directive |
mode_directive |
meta_predicate_directive |
meta_non_terminal_directive |
info_directive |
dynamic_directive |

73R

14

T3]

14

”l

”l

nonvar) .

nonvar ‘) .

”I

’7|

2.1.

Grammar

119

The Logtalk Handbook, Release v3.21.0

discontiguous_directive |
multifile_directive |
coinductive_directive |
operator_directive

alias_directive ::=

113 I3k

:— alias (” entity_identifier “, ” predicate_indicator_alias_list “) .” |

[T3EEL)

:— alias (” entity_identifier “, ” non_terminal_indicator_alias_list) .”

13

synchronized_directive ::=

13 i)

:— synchronized (” predicate_indicator_term | non_terminal_indicator_term “) .

uses_directive ::=

113 T3k

:— uses (” object_identifier “, ” predicate_indicator_alias_list “) .”

use_module_directive ::=

3 (A1)

:— use_module (” module_identifier “, ” module_predicate_indicator_alias_list ©) .” |

scope_directive ::=

13 Lt} |

:— public (” predicate_indicator_term | non_terminal_indicator_term) .

13 ’9 |

:— protected (” predicate_indicator_term | non_terminal_indicator_term *) .

113 EH)

:— private (” predicate_indicator_term | non_terminal_indicator_term) .

mode_directive ::=
“:— mode (” predicate_mode_term | non_terminal_mode_term ““, ” number_of_proofs “) .

I

meta_predicate_directive ::=
“:— meta_predicate (” meta_predicate_template_term *) .

i)

meta_non_terminal_directive ::=

113 i)

:— meta_non_terminal (” meta_non_terminal_template_term “) .

info_directive ::=

13 [T3NEE]

:— info (” predicate_indicator | non_terminal_indicator , ” predicate_info_list *“) .”

dynamic_directive ::=
“:— dynamic (” qualified_predicate_indicator_term | qualified_non_terminal_indicator_term) .

Lt}

discontiguous_directive ::=

13

:— discontiguous (” predicate_indicator_term |

120 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

I

non_terminal_indicator_term) .

multifile_directive ::=
“:— multifile (” qualified_predicate_indicator_term I

i)

qualified_non_terminal_indicator_term “) .

coinductive_directive ::=

13

:— coinductive (” predicate_indicator_term |

tL)

coinductive_predicate_template_term) .

predicate_indicator_term ::=
predicate_indicator |
predicate_indicator_sequence |
predicate_indicator_list

predicate_indicator_sequence ::=
predicate_indicator |

[73NR1]

predicate_indicator *,” predicate_indicator_sequence

predicate_indicator_list ::=
“[” predicate_indicator_sequence “]”

qualified_predicate_indicator_term ::=
qualified_predicate_indicator |
qualified_predicate_indicator_sequence |
qualified_predicate_indicator_list

qualified_predicate_indicator_sequence ::=
qualified_predicate_indicator |

T3]

qualified_predicate_indicator *“, ” qualified_predicate_indicator_sequence

qualified_predicate_indicator_list ::=
“[” qualified_predicate_indicator_sequence “]”

qualified_predicate_indicator ::=
predicate_indicator |
object_identifier “: :” predicate_indicator |
category_identifier ““: :” predicate_indicator |

[T3RR 1]

module_identifier ““:” predicate_indicator

predicate_indicator_alias ::=

2.1. Grammar

121

The Logtalk Handbook, Release v3.21.0

predicate_indicator |
predicate_indicator “as” predicate_indicator |
predicate_indicator *“: :” predicate_indicator |

[T3RR 1]

predicate_indicator *“:” predicate_indicator

predicate_indicator_alias_sequence ::=
predicate_indicator_alias |

73R

predicate_indicator_alias ““, ” predicate_indicator_alias_sequence

predicate_indicator_alias_list ::=

13

[predicate_indicator_alias_sequence “]”

module_predicate_indicator_alias ::=
predicate_indicator |
predicate_indicator “as” predicate_indicator |

@,

predicate_indicator *“:” predicate_indicator

module_predicate_indicator_alias_sequence ::=
module_predicate_indicator_alias |

[T3EEL)

module_predicate_indicator_alias “, ” module_predicate_indicator_alias_sequence

module_predicate_indicator_alias_list ::=

13

[” module_predicate_indicator_alias_sequence “]”

non_terminal_indicator_term ::=
non_terminal_indicator |
non_terminal_indicator_sequence |
non_terminal_indicator_list

non_terminal_indicator_sequence ::=
non_terminal_indicator |

[T3EEE)

non_terminal_indicator ““, ” non_terminal_indicator_sequence

non_terminal indicator list ::=

13

[’ non_terminal_indicator_sequence “]”

non_terminal_indicator ::=
functor *“/ /7 arity

qualified_non_terminal_indicator_term ::=
qualified_non_terminal_indicator |

122 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

qualified_non_terminal_indicator_sequence |
qualified_non_terminal_indicator_list

qualified_non_terminal_indicator_sequence ::=
qualified_non_terminal_indicator |
qualified_non_terminal_indicator *“, ” qualified_non_terminal_indicator_sequence

qualified_non_terminal_indicator_list ::=

13

[qualified_non_terminal_indicator_sequence “]”

qualified_non_terminal_indicator ::=
non_terminal_indicator |

object_identifier “: :” non_terminal_indicator |
category_identifier ““: :” non_terminal_indicator |
module_identifier “:” non_terminal_indicator

non_terminal_indicator_alias ::=
non_terminal_indicator |
non_terminal_indicator “as” non_terminal_indicator

non_terminal_indicator *“: :” non_terminal_indicator

non_terminal_indicator_alias_sequence ::=
non_terminal_indicator_alias |
13 "

non_terminal_indicator_alias *,
non_terminal_indicator_alias_sequence

non_terminal_indicator_alias_list ::=

13

[non_terminal_indicator_alias_sequence “]”

coinductive_predicate_template_term ::=
coinductive_predicate_template |
coinductive_predicate_template_sequence |
coinductive_predicate_template_list

coinductive_predicate_template_sequence ::=
coinductive_predicate_template |

coinductive_predicate_template ,
coinductive_predicate_template_sequence

coinductive_predicate_template_list ::=

13

[coinductive_predicate_template_sequence “]”

2.1. Grammar 123

The Logtalk Handbook, Release v3.21.0

coinductive_predicate_template ::=
atom “ (” coinductive_mode_terms)’

coinductive_mode_terms ::=
coinductive_mode_term |

“w o

coinductive_mode_terms *“, ”” coinductive_mode_terms

coinductive_mode_term ::=

6,9 L
+7 -

predicate_mode_term ::=

113

atom ““ (”” mode_terms) ”

non_terminal_mode_term ::=

3

atom * (”” mode_terms) ”

mode_terms ::=
mode_term |

[73NE1)

mode_term ““, ”” mode_terms

mode_term ::=
“@ [type | 1“+” [type 11 <=7 [type] 1 “2”
type 11
£4++79 [type] | ﬂé__?? [type]

type ::=

prolog_type | logtalk_type | user_defined_type

prolog_type ::=
|« |

“term nonvar var” |

“compound” | “ground” | “callable” | “list” |
“atomic” | “atom” |
“number” | “integer” | “float”

logtalk_type ::=

”lu ”lu ”l

“object category protocol

“event”

user_defined_type ::=
atom |
compound

124 Chapter 2.

Reference Manual

The Logtalk Handbook, Release v3.21.0

number_of_proofs ::=

”l“ 77|“ 97|“

“zero zero_or_one zZero_or_more one” |

77|“ ”|“

“one_or_more one_or_error error”

meta_predicate_template_term ::=
meta_predicate_template |
meta_predicate_template_sequence |
meta_predicate_template_list

meta_predicate_template_sequence ::=
meta_predicate_template |

73R

meta_predicate_template ,” meta_predicate_template_sequence

meta_predicate_template_list ::=

113

[meta_predicate_template_sequence “]”

meta_predicate_template ::=
object_identifier “: :” atom “ (” meta_predicate_specifiers “) ” |

113 EE) |

category_identifier ““: :” atom *“ (” meta_predicate_specifiers)

113

atom “ (” meta_predicate_specifiers “) 7

meta_predicate_specifiers ::=
meta_predicate_specifier |

[T3NEE)

meta_predicate_specifier ““, ” meta_predicate_specifiers

meta_predicate_specifier ::=
I 13 - 2" CEAY

non-negative integer | ““: :

@, 9
*

meta_non_terminal_template_term ::=
meta_predicate_template_term

entity_info_list ::=
13 [] 2 |

13 113 | EL)

[entity_info_item “is” nonvar

“]”

entity_info_list

entity_info_item ::=

“comment” | “remarks” |
“author” | “version”|“date” |
“copyright”|“license” |

2.1. Grammar 125

The Logtalk Handbook, Release v3.21.0

3 9 13 bRl
parameters” | “parnames” |
“see_also” |

atom

predicate_info_list ::=
13 [J 2 |

113 113 | 2

[predicate_info_item “is” nonvar predicate_info_list “]”

predicate_info_item ::=

”l“ 7a|

remarks

nlu

“comment

“arguments argnames” |
“redefinition”|“allocation”|
| |

“examples exceptions

atom

2.1.10 Clauses and goals

clause ::=
object_identifier “: :” head “: =" body |
module_identifier “:” head “: =" body |
head :- body |
fact

goal =

message_sending |
super_call |
external_call |
context_switching_call |
callable

message_sending ::=
message_to_object |
message_delegation |
message_to_self

message_to_object ::=
receiver ““: :” messages

message_delegation ::=

113

[’ message_to_object “1”

message_to_self ::=

126 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

“::” messages

super_call ::=
“~n7 message

messages ::=
message |

13 (7’ [T3EEE)

message ““, ” messages)

13 (” 6,

message ““; ” messages)

”l
”l

113

(” message “—>"" messages) ”

message ::=
callable |

variable

receiver ::=
“{” callable “}” |
object_identifier |
variable

external_call ::=
13 { 2 Callable 113 } ”

context_switching_call ::=
object_identifier “<<” goal

2.1.11 Lambda expressions

lambda_expression ::=
lambda_free_variables ““/”” lambda_parameters “>>" callable |
lambda_free_variables “/” callable |
lambda_parameters “>>" callable

lambda_free_variables ::=
“{” conjunction of variables ““}” |
“{” variable <} |
“ry

lambda_parameters ::=
list of terms |
13 [1 2

2.1. Grammar 127

The Logtalk Handbook, Release v3.21.0

2.1.12 Entity properties

category_property ::=
“static”|
“dynamic” |
“puilt_in”|

“file (" atom)™ |

73R

“file (" atom“,” atom)" |

[T3NE1]

“lines (7 integer *,” integer ‘)

7
“events” |
“source_data” |l

“public (” predicate_indicator_list ““) ” |
“protected (” predicate_indicator_list “) |

“private (” predicate_indicator_list ““) ” |

T3k

“declares (” predicate_indicator “, ” predicate_declaration_property_list ““) " |

(3T

“defines (” predicate_indicator ““, ” predicate_definition_property_list ““) 7 |

[T3NEE) 73]

“includes (” predicate_indicator ““, ” object_identifier | category_identifier ,
predicate_definition_property_list “) |

[T3EEE) 73]

“provides (” predicate_indicator *, ” object_identifier | category_identifier ,
predicate_definition_property_list “) ” |

[T3NE1)

“alias (” predicate_indicator ““, ” predicate_alias_property_list “) |

[T3NEE]

“calls (” predicate ““, ” predicate_call_update_property_list) ™ |
“updates (” predicate ““, ” predicate_call_update_property_list) ” |
“number_of_clauses (” integer)" |

“number_of_rules (" integer) |

“number_of_user_clauses (” integer) |
2 I

“number_of_user_rules (” integer *)

“debugging”

object_property ::=
“static”|
“dynamic”|
“built_in” |
“threaded” |
“file (" atom)™ |

[T3EEE)

“file (" atom*,” atom)" |

[T3NE1]

“lines (7 integer *,” integer ‘)

|
“context_switching_calls”|
“dynamic_declarations”|
“events” |

’7|

“source_data

7’|“

allow restrict

(” 113 2 “)wl

“complements
“complements” |

“public (” predicate_indicator_list ““) 7 |
“protected (” predicate_indicator_list “) |
“private (” predicate_indicator_list “) |

[T3NEE]

“declares (” predicate_indicator “, ” predicate_declaration_property_list ““) 7 |

128 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

@

“defines (” predicate_indicator ““, ” predicate_definition_property_list ““) 7 |

[T3NEE] T3]

“includes (” predicate_indicator *“, ” object_identifier | category_identifier ,
predicate_definition_property_list “) |

“provides (” predicate_indicator ““, ” object_identifier | category_identifier “,”
predicate_definition_property_list ©)

“alias (” predicate_indicator ““, ” predicate_alias_property_list “) |

[T3EEE)

“calls (” predicate ““, ” predicate_call_update_property_list “) |

[T3EE1]

“updates (” predicate ““, ” predicate_call_update_property_list)

97|

”l

“number_of_clauses (” integer *‘)
“number_of_rules (” integer) |

i)

“number_of_user_clauses (" integer *)
“number_of_user_rules (" integer “)” |
“module I”

“debugging”

protocol_property ::=
“static” |
“dynamic” |
“pbuilt_in”|
“source_data
“file (" atom “)” |

[T3EEE)

“file (" atom*“,” atom)" |

’7|

w9

“lines (7 integer *,” integer ‘)

97|

“public (” predicate_indicator_list “) ” |
“protected (” predicate_indicator_list ““) |
“private (” predicate_indicator_list ““) |

[T3NEE]

“declares (” predicate_indicator “, ” predicate_declaration_property_list) 7 |

“alias (” predicate_indicator ““, ” predicate_alias_property_list “) |
“debugging”

predicate_declaration_property_list ::=

13

[predicate_declaration_property_sequence “]”

predicate_declaration_property_sequence ::=
predicate_declaration_property |

[T3EELE)

predicate_declaration_property “,
predicate_declaration_property_sequence

predicate_declaration_property ::=

95|“

“static” | “dynamic” |

“scope (7 scope “)” |
| |

“private” | “protected” | “public” |

“coinductive” |
“multifile”|

“synchronized

”l

2.1. Grammar 129

The Logtalk Handbook, Release v3.21.0

”l

“meta_predicate (” meta_predicate_template)

77|

“coinductive (” coinductive_predicate_template *)

”I

“non_terminal (” non_terminal_indicator)
“include (" atom “)” |

”l

“line_count (” integer *)

[T3NE1]

“mode (” predicate_mode_term | non_terminal_mode_term ““, ” number_of_proofs) |
“info (” llSl‘ “) £

predicate_definition_property_list ::=

113

[predicate_definition_property_sequence “]”

predicate_definition_property_sequence ::=
predicate_definition_property |

T3]

predicate_definition_property “,
predicate_definition_property_sequence

predicate_definition_property ::=

“inline” | “auxiliary”|

”l

“non_terminal (” non_terminal_indicator)
“include (" atom <) |

’7|

“line_count (” integer *)

nl

“number_of_clauses (” integer *)

29

“number_of_rules (” integer)

predicate_alias_property_list ::=

13

[predicate_alias_property_sequence “]”

predicate_alias_property_sequence ::=
predicate_alias_property |

T3]

predicate_alias_property ““, ” predicate_alias_property_sequence

predicate_alias_property ::=
“for (” predicate_indicator “) ” |

”l

“from (” entity_identifier)
“non_terminal (” non_terminal_indicator <) |
“include (" atom)" |

2

“line_count (” integer)

predicate ::=
predicate_indicator |
“~~” predicate_indicator |
“::” predicate_indicator |
variable *“: :” predicate_indicator |

130 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

object_identifier “: :” predicate_indicator |

[T

variable *“ :” predicate_indicator |

[T L]

module_identifier ““:” predicate_indicator

predicate_call_update_property_list ::=

113 2

[predicate_call_update_property_sequence]

predicate_call_update_property_sequence ::=
predicate_call_update_property |

I3k

predicate_call_update_property “,
predicate_call_update_property_sequence

predicate_call_update_property ::=
“caller (” predicate_indicator) ” |

“include (" atom “)” |
’7|

“line_count (7 integer *)

“as (” predicate_indicator)

2.1.13 Predicate properties

predicate_property ::=

95|“

“static” | “dynamic” |

“scope (7 scope) |

”l“ ”l“

“private” | “protected” | “public”|

79|“ wl

“logtalk” | “prolog” | “foreign
“coinductive (” coinductive_predicate_template) |
“multifile”l

“synchronized

“built_in”|

9,|

’7|

“inline
“declared_in (” entity_identifier ©) |
“defined_in (” object_identifier | category_identifier “) ” |

nl

“redefined_from (” object_identifier | category_identifier *)
“meta_predicate (” meta_predicate_template <)’ |

“alias_of (” callable “)” |
“alias_declared_in (” entity_identifier) |
" |

“non_terminal (” non_terminal_indicator)
“mode (” predicate_mode_term | non_terminal_mode_term *“, ” number_of_proofs) ” |
“Iinfo (" list) |

“number_of_clauses (" integer)" |

“number_of_rules (7 integer “)” |

“declared_in (” entity_identifier ““, ” line_count) ” |

“defined_in (” object_identifier | category_identifier “, ” line_count) |

7

“redefined_from (” object_identifier | category_identifier *“, ”” line_count *)
“alias_declared_in (” entity_identifier “, ” line_count “)”

2.1. Grammar 131

The Logtalk Handbook, Release v3.21.0

line_count ::=
integer”

2.1.14 Compiler flags

compiler_flag ::=
flag(flag_value)

2.2 Control constructs
2.2.1 Message sending
122

Description

Object::Message

{Proxy}::Ms

Sends a message to an object. The message argument must match a public predicate of the receiver object. When
the message corresponds to a protected or private predicate, the call is only valid if the sender matches the predicate
scope container. When the predicate is declared but not defined, the message simply fails (as per the closed-world
assumption).

The {Proxy}: :Message syntax allows simplified access to parametric object proxies. Its operational semantics
is equivalent to the goal conjunction (call (Proxy), Proxy::Message). le. Proxy is proved within the
context of the pseudo-object user and, if successful, the goal term is used as a parametric object identifier. Exceptions
thrown when proving Proxy are handled by the : : /2 control construct. This syntax construct supports backtracking
over the {Proxy} goal.

The lookups for the message declaration and the corresponding method are performed using a depth-first strategy. De-
pending on the value of the optimize flag, these lookups are performed at compile time whenever sufficient information
is available. When the lookups are performed at runtime, a caching mechanism is used to improve performance in
subsequent messages.

Modes and number of proofs

+object_identifier::+callable - zero_or_more
{+object_identifier}::+callable - zero_or_more
Errors

Either Object or Message is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)

Message is neither a variable nor a callable term:

132 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

type_error (callable, Message)
Message, with predicate indicator Name/Arity, is declared private:
permission_error (access, private_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is declared protected:
permission_error (access, protected_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is not declared:
existence_error (predicate_declaration, Name/Arity)
Object does not exist:
existence_error (object, Object)

Proxy is a variable:
instantiation_error
Proxy is neither a variable nor a callable term:
type_error(callable, Proxy)
Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:

existence_error (procedure, Name/Arity)

Examples

V\
I

w N e
<

yes

See also:

2L [/

A

Description

Sends a message to self. Can only used in the body of a predicate definition. The argument should match a public or
protected predicate of self. It may also match a private predicate if the predicate is within the scope of the object where
the method making the call is defined, if imported from a category, if used from within a category, or when using
private inheritance. When the predicate is declared but not defined, the message simply fails (as per the closed-world
assumption).

The lookups for the message declaration and the corresponding method are performed using a depth-first strategy. A
message to self necessarily implies the use of dynamic binding but a caching mechanism is used to improve perfor-
mance in subsequent messages.

2.2. Control constructs 133

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

::+callable - zero_or_more

Errors

Message is a variable:
instantiation_error
Message is neither a variable nor a callable term:
type_error (callable, Message)
Message, with predicate indicator Name/Arity, is declared private:
permission_error (access, private_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is not declared:
existence_error (predicate_declaration, Name/Arity)

Examples

area (Area) :—
crwidth (Width),
: theight (Height),
Area is WidthxHeight.

See also:
/2,1, [1/1
2.2.2 Message delegation

[n

Description

This control construct allows the programmer to send a message to an object while preserving the original sender.
It is mainly used in the definition of object handlers for unknown messages. This functionality is usually known as
delegation but be aware that this is an overloaded word that can mean different things in different object-oriented
programming languages.

To prevent using of this control construct to break object encapsulation, an attempt to delegate a message to the original
sender results in an error. The remaining error conditions are the same as the ::/2 control construct.

Note that, despite the correct functor for this control construct being (traditionally) '.' /2, we refer toitas []/1
simply to emphasize that the syntax is a list with a single element.

134 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

[+tobject_identifier::+callable] - zero_or_more
[{+tobject_identifier}::+callable] - zero_or_more
Errors

Object and the original sender are the same object:

permission_error (access, object, Sender)

Either Object or Message is a variable:
instantiation_error
Object is neither a variable nor an object identifier:
type_error (object_identifier, Object)
Message is neither a variable nor a callable term:
type_error (callable, Message)
Message, with predicate indicator Name/Arity, is declared private:
permission_error (access, private_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is declared protected:
permission_error (access, protected_predicate, Name/Arity)
Message, with predicate indicator Name/Arity, is not declared:
existence_error (predicate_declaration, Name/Arity)
Object does not exist:

existence_error (object, Object)

Proxy is a variable:
instantiation_error
Proxy is neither a variable nor an object identifier:
type_error (object_identifier, Proxy)
Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:

existence_error (procedure, Name/Arity)

Examples

forward (Messa
[backup: :

See also:

202, /1, MY forward/1

2.2.3 Calling imported and inherited predicates

AANA

2.2. Control constructs

135

The Logtalk Handbook, Release v3.21.0

Description

~“"~Predicate

Calls an imported or inherited predicate definition. The call fails if the predicate is declared but there is no imported or
inherited predicate definition (as per the closed-world assumption). This control construct may be used within objects
or categories in the body of a predicate definition.

This control construct preserves the implicit execution context self and sender arguments (plus the meta-call context
and coinduction stack when applicable) when calling the inherited (or imported) predicate definition.

The lookups for the predicate declaration and the predicate definition are performed using a depth-first strategy. De-
pending on the value of the optimize flag, these lookups are performed at compile time when the predicate is static
and sufficient information is available. When the lookups are performed at runtime, a caching mechanism is used to
improve performance in subsequent calls.

When the call is made from within an object, the lookup for the predicate definition starts at the imported categories, if
any. If an imported predicate definition is not found, the lookup proceeds to the ancestor objects. Calls from predicates
defined in complementing categories lookup inherited definitions as if the calls were made from the complemented
object, thus allowing more comprehensive object patching. For other categories, the predicate definition lookup is
restricted to the extended categories.

The called predicate should be declared public or protected. It may also be declared private if within the scope of the
entity where the method making the call is defined.

This control construct is a generalization of the Smalltalk super keyword to take into account Logtalk support for
prototypes and categories besides classes.

Modes and number of proofs

“*+callable - zero_or_more

Errors

Predicate is a variable:
instantiation_error
Predicate is neither a variable nor a callable term:
type_error (callable, Predicate)
Predicate, with predicate indicator Name/Arity, is declared private:
permission_error (access, private_predicate, Name/Arity)
Predicate, with predicate indicator Name/Arity, is not declared:
existence_error (predicate_declaration, Name/Arity)

Examples

init :-
assertz (counter (0)),
~Minit.

See also:

22,1 [/

136 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

2.2.4 Calling external predicates

{31

Description

{Term}
{Goal}

This control construct allows the programmer to bypass the Logtalk compiler. It can also be used to wrap a source file
term (either a clause or a directive) to bypass the term-expansion mechanism. Similarly, it can also be used to wrap
a goal to bypass the goal-expansion mechanism. When used to wrap a goal, it is opaque to cuts and the argument is
called within the context of the pseudo-object user. It is also possible to use {Closure} as the first argument of
call/I-N calls. In this case, Closure will be extended with the remaining arguments of the call/2-N call in order
to construct a goal that will be called within the context of user. It can also be used as a message to any object. This
is useful when the message is e.g. a conjunction of messages, some of which being calls to Prolog built-in predicates.

This control construct may also be used in place of an object identifier when sending a message. In this case, the
result of proving its argument as a goal (within the context of the pseudo-object user) is used as an object identifier
in the message sending call. This feature is mainly used with parametric objects when their identifiers correspond to
predicates defined in user.

Modes and number of proofs

{+callable} - zero_or_more

Errors

Term or Goal is a variable:
instantiation_error

Term is neither a variable nor a callable term:
type_error(callable, Term)

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

{:- load_foreign;resource(file)}.

ad Tie stanaarad </« operactor:

N1/D1 < N2/D2 :-
{N1+xD2 < N2*D1}.

call_in_user (F, X,
call ({F}, X, Y,

(continues on next page)

2.2. Control constructs 137

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

?— {circle(Id, Radius, Color)}::area(Area

se Prolog built—-in predicates as messages

| 2- logtalk::{write('hello world!'), nl}.
hello world!
yes

2.2.5 Context switching calls

<</2

Description

Debugging control construct. Calls a goal within the context of the specified object. The goal is called with the
execution context (sender, this, and self) set to the object. The goal may need to be written between parenthesis to
avoid parsing errors due to operator conflicts. This control construct should only be used for debugging or for writing
unit tests. This control construct can only be used for objects compiled with the context_switching_calls compiler flag
set to allow. Set this compiler flag to deny to disable this control construct and thus preventing using it to break
encapsulation.

The {Proxy}<<Goal syntax allows simplified access to parametric object proxies. Its operational semantics is
equivalent to the goal conjunction (call (Proxy), Proxy<<Goal).le.Proxy isproved within the context of
the pseudo-object user and, if successful, the goal term is used as a parametric object identifier. Exceptions thrown
when proving Proxy are handled by the <</2 control construct. This syntax construct supports backtracking over
the {Proxy} goal.

Caveat: although the goal argument is fully compiled before calling, some necessary information for the second
compiler pass may not be available at runtime.

Modes and number of proofs

+object_identifier<<+callable - zero_or_more
{+object_identifier}<<+callable - zero_or_more
Errors

Either Object or Goal is a variable:
instantiation_error
Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)
Goal is neither a variable nor a callable term:
type_error (callable, Goal)
Object does not contain a local definition for the Goal predicate:

existence_error (procedure, Goal)

138 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Object does not exist:
existence_error (object, Object)

Object was created/compiled with support for context switching calls turned off:
permission_error (access, database, Goal)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error (object_identifier, Proxy)

The predicate Proxy does not exist in the user pseudo-object:
existence_error (procedure, ProxyFunctor/ProxyArity)

Examples

S vt AF N ny o+ n A + .
1Cext r the L1 O Jject:

test (member) :-—
list << member (1, [171).

2.3 Directives

2.3.1 Source file directives
encoding/1

Description

encoding (Encoding)

Declares the source file text encoding. Requires a backend Prolog compiler supporting the chosen encoding. When
used, this directive must be the first term in the source file in the first line.

The encoding used in a source file (and, in the case of a Unicode encoding, any BOM present) will be used for the
intermediate Prolog file generated by the compiler. Logtalk uses the encoding names specified by IANA. In those
cases where a preferred MIME name alias is specified, the alias is used instead. Examples includes 'US-ASCITI',
'ISO-8859-1', 'IS0-8859-2', 'IS0O-8859-15', 'UCS-2', 'UCS-2LE', 'UCS-2BE', 'UTIF-8',
'UTF-16"', 'UTF-16LE', 'UTF-16BE"', 'UTF-32', 'UTF-32LE', 'UTF-32BE"', 'Shift_JIS', and
'"EUC-JP'. When writing portable code that cannot be expressed using ASCII, 'UTF-8"' is the most commonly
supported encoding.

The backend Prolog compiler adapter files define a table that translates between the Logtalk and Prolog specific atoms
that represent each supported encoding.

Template and modes

encoding (+atom)

2.3. Directives 139

http://www.iana.org/assignments/character-sets/character-sets.xhtml

The Logtalk Handbook, Release v3.21.0

Examples

:— encoding ('UTF-8") .

include/1

Description

include (F'ile)

Includes a file contents, which must be valid terms, at the place of occurrence of the directive. The file can be specified
as a relative path, an absolute path, or using library notation and is expanded as a source file name. Relative paths are
interpreted as relative to the path of the file containing the directive.

When using the reflection API, predicates from an included file can be distinguished from predicates from the main
file by looking for the include/ 1 predicate declaration or predicate definition property. For the included predicates,
the 1ine_count /1 property stores the term line number in the included file.

This directive can be used as either a source file directive or an entity directive. As an entity directive, it can be used
both in entities defined in source files and with the entity creation built-in predicates. In the latter case, the file should
be specified using an absolute path or using library notation (which expands to a full path).

Warning: When using this directive as an argument in calls to the create_object/4 and create_category/4 predi-
cates, the objects and categories will not be recreated or redefined when the included file(s) are modified and the
logtalk_make/0 predicate or the logtalk_make/I (with target al1l) predicates are called.

Template and modes

include (€source_file_name)

Examples

he la

:— include (data('raw_1.txt'"')).

:— include('factbase.pl').

clude a f e given its absolute

:— include (' /home/me/databases/countries.pl').

reate a wrapper object for a Proloqg

7- create_object (cities, [], [public(city/4), include('cities.pl')]l, []).

initialization/1

140 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Description

initialization (Goal)

When used within an object, this directive defines a goal to be called after the object has been loaded into memory.
When used at a global level within a source file, this directive defines a goal to be called after the compiled source file
is loaded into memory.

Multiple initialization directives can be used in a source file or in an object. Their goals will be called in order at
loading time.

Categories and protocols cannot contain initialization directives as the initialization goals would lack a complete
execution context that is only available for objects.

Although technically a global initialization/1 directive in a source file is a Prolog directive, calls to Logtalk
built-in predicates from it are usually compiled to improve performance and providing better support for embedded
applications.

Template and modes

initialization(@callable)

Examples

g thne di e

:— initialization(init).

op/3

Description

OP(EA ;
op (Pr ence, A ator, ...1)

Declares operators. Operators declared inside entities have local scope. Global operators can be declared inside a
source file by writing the respective directives before the entity opening directives.

Template and modes

op (+integer, +associativity, +atom_or_atom_list)

Examples

0, fy,
0, ty,
0, ty,
Or fYI -

@ D +

2.3. Directives 141

The Logtalk Handbook, Release v3.21.0

See also:

current_op/3

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets Logtalk flag values. The scope of this directive is the entity or the source file containing it. For global scope, use

the corresponding ser_logtalk_flag/2 built-in predicate called from an initialization/I directive.

Template and modes

set_logtalk_flag(+atom, +nonvar)

Errors

Flag is a variable:
instantiation_error
Value is a variable:
instantiation_error
Flag is not an atom:
type_error (atom, Flag)
Flag is neither a variable nor a valid flag:
Flag)

Value is not a valid value for flag Flag:

domain_error (flag,
domain_error (flag_value, Flag + Value)
Flag is a read-only flag:

flag,

permission_error (modify, Flag)

Examples

the

:— set_logtalk_flag(unknown_entities,

silent).

:— object(...).

+a FAr meac es sent from th

erate even

ge

:— set_logtalk_flag(events,

allow) .

142

Chapter 2.

Reference Manual

The Logtalk Handbook, Release v3.21.0

2.3.2 Conditional compilation directives

if/1
Description
if (Goal)

Starts conditional compilation. The code following the directive is compiled iff Goal is true. The goal is subjected to
goal expansion when the directive occurs in a source file.

Conditional compilation goals cannot depend on predicate definitions contained in the same source file that contains
the conditional compilation directives (as those predicates only become available after the file is fully compiled and
loaded).

Template and modes

if (Gcallable)

Examples

:— if (\+ predicate_property (length(,), built_in)).

length(List, Length) :-

:— endif.

See also:

elif/1, else/0, endif/0

elif/1

Description

elif (Goal)

Supports embedded conditionals when performing conditional compilation. The code following the directive is com-
piled iff Goal is true. The goal is subjected to goal expansion when the directive occurs in a source file.

Conditional compilation goals cannot depend on predicate definitions contained in the same source file that contains
the conditional compilation directives (as those predicates only become available after the file is fully compiled and
loaded).

Template and modes

elif (Gcallable)

2.3. Directives 143

The Logtalk Handbook, Release v3.21.0

Examples

:— if (current_prolog flag(double_quotes, codes)).

:— elif (current_prolog flag(double_quotes, chars)).

:— elif (current_prolog flag(double_quotes, atom)) .

:— endif.

See also:

else/0, endif/0, if/1

else/0

Description

else

Starts an else branch when performing conditional compilation. The code following this directive is compiled iff the
goal in the matching if// directive is false.

Template and modes

else

Examples

:— if (current_prolog flag(bounded, true)).

:— initialization(
logtalk: :print_message (warning, app,bounded_arithmetic)

:— else.
:— initialization(
logtalk: :print_message (comment, app, unbounded_arithmetic)
) -
:— endif.
See also:

elif/l, endif/0, if/1

144 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

endif/0

Description

endif

Ends conditional compilation for the matching if// directive.

Template and modes

endif

Examples

:— if (date::today(,5,25)).
:— initialization (write ('Happy Towel Day!\n')).

:— endif.

See also:

elif/1, else/0, if/1

2.3.3 Entity directives
built_in/0

Description

built_in

Declares an entity as built-in. Built-in entities cannot be redefined once loaded.

Template and modes

built_in

Examples

’:— built_in. ‘

2.3. Directives 145

The Logtalk Handbook, Release v3.21.0

category/1-3

Description

category (Category)

category (Category,
implements (Protocols))

category (Category,
extends (Categories))

category (Category,
complements (Objects))

category (Category,
implements (Protocols),
extends (Categories))

category (Category,
implements (Protocols),
complements (Objects))

category (Cate
extends (Csa
complements (Object

“Yr

tegories

category (Category,
implements (Protocols),
extends (Categories),
complements (Objects))

Starting category directive.

Template and modes

category (+category_identifier)

category (+category_identifier,
implements (+implemented_protocols))

category (+category_identifier,
extends (+extended_categories))

category (+category_identifier,
complements (+complemented_objects))

category (+category_identifier,
implements (+implemented_protocols),
extends (+textended_categories))

category (+category_identifier,
implements (+implemented_protocols),
complements (+complemented_objects))

(continues on next page)

146

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

category (+category_identifier,
extends (+extended_categories),
complements (+complemented_objects))

category (+category_identifier,
implements (+implemented_protocols),
extends (+textended_categories),
complements (+complemented_objects))

Examples

:— category (monitoring) .

:— category (monitoring,
implements (monitoringp)) .

:— category (attributes,
implements (protected: :variables)) .

:— category (extended,
extends (minimal)) .

:— category (logging,
implements (monitoring),
complements (employee)) .

See also:

end_category/0

dynamic/0

Description

dynamic

Declares an entity and its contents as dynamic. Dynamic entities can be abolished at runtime.

Template and modes

’dynamic

Examples

:— dynamic.

See also:

dynamic/l, object_property/2, protocol_property/2, category_property/2

2.3. Directives

147

The Logtalk Handbook, Release v3.21.0

end_category/0

Description

end_category

Ending category directive.

Template and modes

’end_category

Examples

’ :— end_category.

See also:

category/1-3

end_object/0

Description

end_object

Ending object directive.

Template and modes

end_object

Examples

’:— end_object.

See also:

object/1-5

end_protocol/0

Description

end_protocol

Ending protocol directive.

148

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Template and modes

’end_protocol

Examples

’:7 end_protocol.

See also:

protocol/l-2

info/1

Description

info ([Key is Value, ...])

Documentation directive for objects, protocols, and categories. The directive argument is a list of pairs using the
format Key is Value. See the Entity directives section for a description of the default keys.

Template and modes

info(+entity_info_list)

Examples

:— info ([
version is 1.0,
author is 'Paulo Moura',
date is 2000/4/20,
comment is 'List protocol.'

1) .

See also:

info/2, object_property/2, protocol_property/2, category_property/2
object/1-5
Description

Stand-alone objects (prototypes)

object (Object)

object (Object,
implements (Protocols))

(continues on next page)

2.3. Directives 149

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

object (Object
imports (C

object (Object,
implements (Protocc
imports (Categ

Prototype extensions

object (Object,
extends (Objects))

object (Object,
implements (Protocols),
extends (Objects))

object (Object,
imports (Categor
extends (Objects))

ies),

object (Object,
implements (P
imports (Cat
extends (C

Class instances

object (Object,
instantiates (Classes))

object (Object,
implements (Proto
instantiates (Classes))

ols),

object (Object
imports (Catec
instantiates (Classes

object (Object,
implements (Protocols),

Classes

object (Object,

object (Object,
implements (Prot
specializes (Classe:

object (Obje
imports (Catec
specializes (Cla

(continues on next page)

150

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

object (Object,
implements (Pr
imports (Cat
specializes(Cla

Classes with metaclasses

object (Object,
instantiates (C1
specializes (C

object (Object,
implements (Protocols),
instantiates (C1 o5
specializes (Cla

object (Object,
imports (Catec

instantiates (C]
specializes (Cla

object (Object,
implements (P1
imports (Cate
instantiates (C]
specializes (Classes))

Starting object directive.

Template and modes

Stand-alone objects (prototypes)

object (+tobject_identifier)

object (+object_identifier,
implements (+implemented_protocols))

object (+object_identifier,
imports (+imported_categories))

object (+object_identifier,
implements (+implemented_protocols),
imports (+imported_categories))

Prototype extensions

object (+tobject_identifier,
extends (+textended_objects))

object (+tobject_identifier,
implements (+implemented_protocols),

extends (+textended_objects))

object (+object_identifier,

(continues on next page)

2.3. Directives

151

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

imports (+imported_categories),
extends (+textended_objects))

object (+object_identifier,
implements (+implemented_protocols),
imports (+imported_categories),
extends (+textended_objects))

Class instances

object (+tobject_identifier,
instantiates (+instantiated_objects))

object (+tobject_identifier,
implements (+implemented_protocols),
instantiates (+instantiated_objects))

object (+object_identifier,
imports (+imported_categories),
instantiates (+instantiated_objects))

object (+tobject_identifier,
implements (+implemented_protocols),
imports (+imported_categories),
instantiates (+instantiated_objects))

Classes

object (+tobject_identifier,
specializes (+specialized_objects))

object (+tobject_identifier,
implements (+implemented_protocols),
specializes (+specialized_objects))

object (+object_identifier,
imports (+imported_categories),
specializes (+specialized_objects))

object (+tobject_identifier,
implements (+implemented_protocols),
imports (+imported_categories),
specializes (+specialized_objects))

Class with metaclasses

object (+tobject_identifier,
instantiates (+instantiated_objects),
specializes (+specialized_objects))

object (+object_identifier,
implements (+implemented_protocols),
instantiates (+instantiated_objects),
specializes (+specialized_objects))

object (+tobject_identifier,
imports (+imported_categories),

(continues on next page)

152

Chapter 2.

Reference Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

instantiates (+instantiated_objects),
specializes (+specialized_objects))

object (+object_identifier,
implements (+implemented_protocols),
imports (+imported_categories),
instantiates (+instantiated_objects),
specializes (+specialized_objects))

Examples

:— object (list).

:— object (list,
implements (listp)) .

:— object (list,
extends (compound)) .

:— object (list,
implements (listp),
extends (compound)) .

:— object (object,
imports (initialization),
instantiates(class)) .

:— object (abstract_class,
instantiates (class),
specializes (object)) .

:— object (agent,
imports (private::attributes)) .

See also:

end_object/0

protocol/1-2

Description

protocol (Protocol)

protocol (Prot
extends (F

rotocols))

Starting protocol directive.

2.3. Directives

153

The Logtalk Handbook, Release v3.21.0

Template and modes

protocol (+protocol_identifier)

protocol (+protocol_identifier,
extends (+textended_protocols))

Examples

:— protocol (listp) .

:— protocol (listp,
extends (compoundp)) .

:— protocol (queuep,
extends (protected::1listp)) .

See also:

end_protocol/0

threaded/0

Description

threaded

Declares that an object supports threaded engines, concurrent calls, and asynchronous messages. Any object contain-
ing calls to the built-in multi-threading predicates (or importing a category that contains such calls) must include this
directive.

This directive results in the automatic creation and set up of an object message queue when the object is loaded or
created at runtime. Object message queues are used for exchanging thread notifications and for storing concurrent goal
solutions and replies to the multi-threading calls made within the object. The message queue for the user pseudo-object
is automatically created at Logtalk startup (provided that multi-threading programming is supported and enabled for
the chosen backend Prolog compiler).

Template and modes

threaded

Examples

:— threaded.

See also:

synchronized/1, object_property/2

154 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

2.3.4 Predicate directives

alias/2

Description

alias (Entity, [Name/Arity as Alias/Arity, ...1)
alias (Entity, [Name//Arity as s//Arity, ...])

Declares predicate and grammar rule non-terminal aliases. A predicate (non-terminal) alias is an alternative name for a
predicate (non-terminal) declared or defined in an extended protocol, an implemented protocol, an extended category,
an imported category, an extended prototype, an instantiated class, or a specialized class. Predicate aliases may be
used to solve conflicts between imported or inherited predicates. It may also be used to give a predicate (non-terminal)
a name more appropriated in its usage context. This directive may be used in objects, protocols, and categories.

Predicate (and non-terminal) aliases are specified using (preferably) the notation Name /Arity as Alias/Arity
or, in alternative, the notation Name /Arity: :Alias/Arity.

It is also possible to declare predicate and grammar rule non-terminal aliases in implicit qualification directives for
sending messages to objects and calling module predicates.

Template and modes

alias (@entity_identifier, +1list (predicate_indicator_alias))
alias(@entity_identifier, +list (non_terminal_indicator_alias))

Examples

te name conflict:

resc ve)

:— alias(list, [member/2 as list_member/2]).
:— alias (set, [member/2 as set_member/2]).

Ao Fine ’ Tt+ternat i £n1 " on—F

:— alias(words, [singular//0 as peculiar//0]).

See also:

uses/2, use_module/2

coinductive/1

Description

coinductive (Name/Arity)
coinductive ((Name/Arity,))
coinductive ([Name/Arity, ...1)

coinductive (Template)
coinductive ((Templa]

2.3. Directives 155

The Logtalk Handbook, Release v3.21.0

This is an experimental directive, used for declaring coinductive predicates. Requires a backend Prolog compiler with
minimal support for cyclic terms. The current implementation of coinduction allows the generation of only the basic
cycles but all valid solutions should be recognized. Use a predicate indicator as argument when all the coinductive
predicate arguments are relevant for coinductive success. Use a template when only some coinductive predicate
arguments (represented by a “+”’) should be considered when testing for coinductive success (represent the arguments
that should be disregarded by a “~*). It’s possible to define local coinductive_success_hook/I-2 predicates that are
automatically called with the coinductive predicate term resulting from a successful unification with an ancestor goal
as first argument. The second argument, when present, is the coinductive hypothesis (i.e. the ancestor goal) used.
These hook predicates can provide an alternative to the use of tabling when defining some coinductive predicates.
There is no overhead when these hook predicates are not defined.

This directive must precede any calls to the declared coinductive predicates.

Template and modes

coinductive (+predicate_indicator_term)
coinductive (+coinductive_predicate_template_term)

Examples

:— coinductive (comember/2) .
:— coinductive (controller (+,+,+,—,-)).

See also:

coinductive_success_hook/1-2, predicate_property/2

discontiguous/1

Description

discontiguous (Name/A)
discontiguous((l*ur/ 11# Lol))
discontiguous ([Name HLLL\, L.])

discontiguous (Name//Arity)
discontiguous ((Name//Arity, ...))
discontiguous ([Name//Arity,]

Declares discontiguous predicates and discontiguous grammar rule non-terminals. The use of this directive should be
avoided as not all backend Prolog compilers support discontiguous predicates.

Template and modes

discontiguous (+predicate_indicator_term)
discontiguous (+non_terminal_indicator_term)

156 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Examples

:— discontiguous (counter/1) .
:— discontiguous ((lives/2, works/2)).

:— discontiguous ([db/4, key/2, file/31).

dynamic/1

Description

dynamic (Name/Arity)
dynamic ((Name/Arity, ...))
dynamic ([Name/Arity,]

dynamic (Entity::Name/Arity)
dynamic ((Entity::
dynamic ([Entity::Name/Arity, ...])

me/Arity, ...))

dynamic (Mc
dynamic ((Moc :Name/Arity, ...))
dynamic ([Module:Name/Arity, 1)

dynamic (Name//Arity)

dynamic ((Name//Arity, ...))

dynamic ([Name//Arity, ...])

dynamic (Entity::Name//Arity)
dynamic ((Entity::Name//Arity, ...))
dynamic ([Entity::] e//Arity, ...1)

dynamic (Module:Name//Arity)
dynamic ((>:Name//Arity, ...))
dynamic ([dule:Name//Arity, ...])

Declares dynamic predicates and dynamic grammar rule non-terminals. Note that an object can be static and have
both static and dynamic predicates/non-terminals. Dynamic predicates cannot be declared as synchronized. When the
dynamic predicates are local to an object, declaring them also as private predicates allows the Logtalk compiler to
generate optimized code for asserting and retracting predicate clauses. Categories can also contain dynamic predicate
directives but cannot contain clauses for dynamic predicates.

The predicate indicators (or non-terminal indicators) can be explicitly qualified with an object, category, or module
identifier when the predicates (or non-terminals) are also declared multifile.

Note that dynamic predicates cannot be declared synchronized (when necessary, declare the predicates updating the
dynamic predicates as synchronized).

Template and modes

dynamic (+qualified_predicate_indicator_term)
dynamic (+qualified_non_terminal_indicator_term)

2.3. Directives 157

The Logtalk Handbook, Release v3.21.0

Examples

:— dynamic (counter/1) .
:— dynamic((lives/2, works/2)).

:— dynamic ([db/4, key/2, file/3]).

See also:

dynamic/0, predicate_property/2

info/2

Description

info (Name/Arity, [Key is Value, ...])
info (Name//Arity, [Key is Value, ...1])

Documentation directive for predicates and grammar rule non-terminals. The first argument is either a predicate
indicator or a grammar rule non-terminal indicator. The second argument is a list of pairs using the format Key is
Value. See the Predicate directives section for a description of the default keys.

Template and modes

info (+predicate_indicator, +predicate_info_list)
info (+non_terminal_indicator, +predicate_info_list)

Examples

:— info (empty/1, [
comment is 'True if the argument is an empty list.',
argnames is ['List']

1) .

:— info (sentence//0, [
comment is 'Rewrites a sentence into a noun phrase and a verb phrase.'

1) .

See also:

info/l, mode/2, predicate_property/2

meta_predicate/1

Description

158 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

meta_predicate (Template)
meta_predicate ((Template, ...))
meta_predicate ([Template, ...1)

meta_predicate (Entity::Template)
meta_predicate ((Entity::Template, ...))
meta_predicate ([Entity::Template, ...])

meta_predicate (Mod
meta_predicate ((
meta_predicate ([

(1le:Template)
ule:Templ e
Module:Template,

Declares meta-predicates, i.e., predicates that have arguments that will be called as goals. An argument may also be
a closure instead of a goal if the meta-predicate uses the call/I-N Logtalk built-in methods to construct and call the

actual goal from the closure and the additional arguments.

Meta-arguments which are goals are represented by the integer 0. Meta-arguments which are closures are represented
by a positive integer, N, representing the number of additional arguments that will be appended to the closure in order
to construct the corresponding meta-call. Normal arguments are represented by the atom =. Meta-arguments are
always called in the meta-predicate calling context, not in the meta-predicate definition context.

Logtalk allows the use of this directive to override the original meta-predicate directive. This is sometimes necessary
when calling Prolog module meta-predicates due to the lack of standardization of the syntax of the meta-predicate

templates.

Template and modes

meta_predicate (+meta_predicate_template_term)

meta_predicate (+object_identifier::+meta_predicate_template_term)
meta_predicate (+category_identifier::+meta_predicate_template_term)

meta_predicate (+module_identifier:+meta_predicate_template_term)

Examples

:— meta_predicate (findall(x, 0, =x)).
:— meta_predicate (forall (0, 0)).

:— meta_predicate (maplist (2, %, =*)).

See also:

meta_non_terminal/l, predicate_property/2

meta_non_terminal/1

Description

2.3. Directives

159

The Logtalk Handbook, Release v3.21.0

meta_non_terminal (Template)

meta_non_terminal ((Template, ...))
meta_non_terminal ([Template, ...])
meta_non_terminal (Entity::T

meta_non_terminal ((Entity:: L))
meta_non_terminal ([Entity:: . 1)
meta_non_terminal (Module:Template)

meta_non_terminal ((
meta_non_terminal ([Mod

Declares meta-non-terminals, i.e., non-terminals that have arguments that will be called as non-terminals (or grammar
rule bodies). An argument may also be a closure instead of a goal if the non-terminal uses the call//I1-N Logtalk
built-in methods to construct and call the actual non-terminal from the closure and the additional arguments.

Meta-arguments which are non-terminals are represented by the integer 0. Meta-arguments which are closures are
represented by a positive integer, N, representing the number of additional arguments that will be appended to the
closure in order to construct the corresponding meta-call. Normal arguments are represented by the atom =. Meta-
arguments are always called in the meta-non-terminal calling context, not in the meta-non-terminal definition context.

Template and modes

meta_non_terminal (+tmeta_non_terminal_template_term)

meta_non_terminal (+object_identifier::+meta_non_terminal_template_term)
meta_non_terminal (+tcategory_identifier::+meta_non_terminal_template_term)

meta_non_terminal (+module_identifier:+meta_non_terminal_template_term)

Examples

:— meta_non_terminal (phrase (1, =*)).
phrase (X, T) --> call(X, T).

See also:

meta_predicate/l, predicate_property/2

mode/2
Description
mode (Mode, NumberOfProofs)

Most predicates can be used with several instantiations modes. This directive enables the specification of each in-
stantiation mode and the corresponding number of proofs (not necessarily distinct solutions). You may also use this
directive for documenting grammar rule non-terminals.

160 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Template and modes

mode (+predicate_mode_term, +number_of_proofs)
mode (+non_terminal_mode_term, +number_of_ proofs)

Examples

:— mode (atom_concat (-atom, —-atom, +atom), one_or_more).
:— mode (atom_concat (+atom, +atom, -atom), one).

:— mode (var (Cterm), zero_or_one).

:— mode (solve (+callable, -list (atom)), zero_or_one).

See also:

info/2, predicate_property/2

multifile/1

Description

multifile (Name/Arity)
multifile ((Name/Arity, ...))
multifile ([Name/Arity, ...])

multifile (Entity::Name/Arity)
multifile ((Entity::Name/Arity, ...))

multifile([Entity::Name/A Y, .. 1)
multifile (Module:Name/Arity)
multifile ((Module:Name/Arity, ...))
multifile ([Module:Name/Arity, ...])
multifile (Name//Arity)

multifile ((Name//Arity, ...))
multifile ([Name//Arity, ...])

multifile (Entity::Name//Arity)

multifile ((Entity::Name//Arity, ...))
multifile([Entity::Name//Arity, ...])
multifile (Module:Name//Arity)

multifile ((Module:Name//
multifile ([Module:Name//Arity, ...])

Declares multifile predicates and multifile grammar rule non-terminals. In the case of object or category multifile
predicates, the predicate (or non-terminal) must also have a scope directive in the object or category holding its
primary declaration (i.e. the declaration without the Entity: : prefix). Entities holding multifile predicate primary
declarations must be compiled and loaded prior to any entities contributing with clauses for the multifile predicates.

Protocols cannot declare multifile predicates as protocols cannot contain predicate definitions.

2.3. Directives 161

The Logtalk Handbook, Release v3.21.0

Template and modes

multifile (+qualified_predicate_indicator_term)
multifile (+qualified_non_terminal_indicator_term)

Examples

:— multifile(table/3).
:— multifile (user::hook/2).

See also:

public/l, protected/1, private/l, predicate_property/2

private/1

Description

private (Name/Arity)
private ((Name/Arity, ...))
private ([Name/Arity, ...])

private (Name//Arity)
private ((Name//Arity, ...))
private ([Name//Arity, ...])

private (op (Pre
private ((op (P:
private ([op (Pre

Declares private predicates, private grammar rule non-terminals, and private operators. A private predicate can only
be called from the object containing the private directive. A private non-terminal can only be used in a call of the
phrase/2 and phrase/3 methods from the object containing the private directive.

Template and modes

private (+predicate_indicator_term)
private (+non_terminal_indicator_term)
private (+toperator_declaration)

Examples

:— private (counter/1).
:— private ((init/1, free/l)).

:— private([data/3, key/1l, keys/1]1).

162 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

See also:

protected/1, public/l, predicate_property/2

protected/1

Description

protected (Name/Arity)
protected ((Name/Arity,
protected ([Name/Arity,

protected (Name//Arity)
protected ((Name//Arity,
protected ([Name//Arity,

protected (op (Precec
protected((op(Pr
protected([op (Pre

ivity,Op
ativity,O

-1)

Declares protected predicates, protected grammar rule non-terminals, and protected operators. A protected predicate
can only be called from the object containing the directive or from an object that inherits the directive. A protected
non-terminal can only be used as an argument in a phrase/2 and phrase/3 calls from the object containing the directive
or from an object that inherits the directive. Protected operators are not inherited but declaring them provides useful

information for defining descendant objects.

Template and modes

protected (+predicate_indicator_term)
protected (+non_terminal_indicator_term)
protected (+toperator_declaration)

Examples

:— protected(init/1).
:— protected((print/2, convert/4)).

:— protected([load/l, save/3]).

See also:

private/l, public/l, predicate_property/2

public/1

Description

2.3. Directives

163

The Logtalk Handbook, Release v3.21.0

public (Name/Arity)
public ((Name/Arity, ...))
public([Name/Arity, ...])

public (Name//Arity)
public((Name//Arity, ...))
public([Name//Arity, ...])

public (op (Pre
public((op(Pr a
public([op (Precedence,Associa

Declares public predicates, public grammar rule non-terminals, and public operators. A public predicate can be called
from any object. A public non-terminal can be used as an argument in phrase/2 and phrase/3 calls from any object.
Public operators are not exported but declaring them provides useful information for defining client objects.

Template and modes

public (+predicate_indicator_term)
public (+non_terminal_indicator_term)
public (+operator_declaration)

Examples

:— public (ancestor/1).
:— public((instance/1, instances/1)).

:— public([leaf/1, leaves/1]).

See also:

private/l1, protected/1, predicate_property/2

synchronized/1

Description

synchronized (Name/Arity)

synchronized ((Name/Arity, ...))
synchronized ([Name/Arity, ...])
synchronized (Name//Arity)
synchronized ((Name//Arity, ...))
synchronized ([Name//Arity, ...])

Declares synchronized predicates and synchronized grammar rule non-terminals. A synchronized predicate (or syn-
chronized non-terminal) is protected by a mutex in order to allow for thread synchronization when proving a call to
the predicate (or non-terminal). All predicates (and non-terminals) declared in the same synchronized directive share
the same mutex. In order to use a separate mutex for each predicate (non-terminal) so that they are independently
synchronized, a per-predicate synchronized directive must be used.

164 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Declaring a predicate synchronized implicitly makes it deterministic. When using a single-threaded backend Prolog
compiler, calls to synchronized predicates behave as wrapped by the standard once /1 meta-predicate.

Note that synchronized predicates cannot be declared dynamic (when necessary, declare the predicates updating the
dynamic predicates as synchronized).

Template and modes

synchronized (+predicate_indicator_term)
synchronized (+non_terminal_indicator_term)

Examples

:— synchronized (db_update/1) .
:— synchronized((write_stream/2, read_stream/2)).

:— synchronized ([add_to_queue/2, remove_from_queue/2]).

See also:

predicate_property/2

uses/2

Description

[Name/Arity, ...])
[Name/Arity as Alias/Arity, ...1)

[Name//Arity, ...])
[Name//Arity as Alias//Arity, ...1]1)

lence \ssociativity, Operator), ...])

[op(Pre

Declares that all calls made from predicates (or non-terminals) defined in the category or object containing the directive
to the specified predicates (or non-terminals) are to be interpreted as messages to the specified object. Thus, this
directive may be used to simplify writing of predicate definitions by allowing the programmer to omit the Ob ject : :
prefix when using the predicates listed in the directive (as long as the calls do not occur as arguments for non-standard
Prolog meta-predicates not declared on the adapter files). It is also possible to include operator declarations in the
second argument.

This directive is also used when compiling calls to the database and reflection built-in methods by looking into these
methods predicate arguments.

It is possible to specify a predicate alias using the notation Name /Arity as Alias/Arity or, in alternative,
the notation Name /Arity: :Alias/Arity. Aliases may be used either for avoiding conflicts between predicates
specified in use_module/2 and uses/2 directives or for giving more meaningful names considering the calling
context of the predicates.

To enable the use of static binding, and thus optimal message sending performance, the objects should be loaded
before compiling the entities that call their predicates.

2.3. Directives 165

The Logtalk Handbook, Release v3.21.0

Template and modes

uses (+tobject_identifier,
uses (+tobject_identifier,

uses (+tobject_identifier,
uses (+tobject_identifier,

uses (+tobject_identifier,

+predicate_indicator_1list)
+predicate_indicator_alias_1list)

+non_terminal_indicator_list)
+non_terminal_indicator_alias_list)

+operator_list)

Examples

[append/ 3,
[data/2])

:— uses(list,
:— uses (store,

find.

tne Irinc

as

findall (X, member (X,

[1St

the same as store:

S

as SLtOore

assertz (data (¥, C)),

11 (X,

member/271) .

L), A)

A),

rappend (A, B, C)

L)y

c))

rassertz(data (X,

Another example, using the extended notation that allows us to define predicate aliases:

:— uses (btrees,
:— uses (queues,

btree_to_queue :-—

.7

the s

new_queue (Queue),

[new/1 as
[new/1 as

new_btree/1]1).
new_queue/1]) .

See also:

use_module/2

use_module/2

Description

use_module (Module,
use_module (Module,

use_module (Module,
use_module (Module,

use_module (Module,

[Name/Arity,
[N

Name

[Name//Arity,

[Name

Lol])

/Arity as Alias/Arity,

-1

//Arity as Alias//Arity,

-1)

ty,Operator),

166

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

This directive declares that all calls (made from predicates defined in the category or object containing the directive)
to the specified predicates (or non-terminals) are to be interpreted as calls to explicitly-qualified module predicates
(or non-terminals). Thus, this directive may be used to simplify writing of predicate definitions by allowing the
programmer to omit the Module: prefix when using the predicates listed in the directive (as long as the predicate
calls do not occur as arguments for non-standard Prolog meta-predicates not declared on the adapter files). It is also
possible to include operator declarations in the second argument.

This directive is also used when compiling calls to the database and reflection built-in methods by examining these
methods predicate arguments.

It is possible to specify a predicate alias using the notation Name/Arity as Alias/Arity or, in alternative,
the notation Name/Arity:Alias/Arity. Aliases may be used either for avoiding conflicts between predicates
specified in use_module/2 and uses/2 directives or for giving more meaningful names considering the calling
context of the predicates.

Note that this directive differs from the directive with the same name found on some Prolog implementations by
requiring the first argument to be a module name (an atom) instead of a file specification. In Logtalk, there’s no
mixing between loading a resource and (declaring the) using (of) a resource. As a consequence, this directive doesn’t
automatically load the module. Loading the module file is dependent of the used backend Prolog compiler and must
be done separately (usually, using a source file use_module/1 or use_module/2 directive in the entity file or in
the application loader file). Also, note that the name of the module may differ from the name of the module file.

The modules should be loaded prior to the compilation of entities that call the module predicates. This is required in
general to allow the compiler to check if the called module predicate is a meta-predicate and retrieve its meta-predicate
template to ensure proper call compilation.

Template and modes

use_module (tmodule_identifier,
use_module (+tmodule_identifier,

use_module (tmodule_identifier,
use_module (+tmodule_identifier,

use_module (tmodule_identifier,

+predicate_indicator_list)
+predicate_indicator_alias_list)

+non_terminal_indicator_list)
+non_terminal_indicator_alias_list)

+operator_list)

Examples

:— use_module (lists, [append/3,
:— use_module (store, [data/2]).

member/271) .

:— use_module (user, [foo/1 as bar/1]).

foo :-

.7
findall (X, member

append (A, B, C),

assertz (data

retractall (bar()),

See also:

2.3. Directives

167

The Logtalk Handbook, Release v3.21.0

uses/2

2.4 Built-in predicates

2.4.1 Enumerating objects, categories and protocols
current_category/1

Description

current_category (Category)

Enumerates, by backtracking, all currently defined categories. All categories are found, either static, dynamic, or
built-in.

Modes and number of proofs

current_category (?category_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:

type_error (category_identifier, Category)

Examples

| ?- current_category (monitoring).

See also:

abolish_category/l, category_property/2, create_category/4, complements_object/2, extends_category/2-3,
imports_category/2-3

current_object/1

Description

current_object (Object)

Enumerates, by backtracking, all currently defined objects. All objects are found, either static, dynamic or built-in.

Modes and number of proofs

current_object (?object_identifier) - zero_or_more

168 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)

Examples

| ?- current_object (list).

See also:

abolish_object/1, create_object/4, object_property/2, extends_object/2-3, instantiates_class/2-3, specializes_class/2-

3, complements_object/2

current_protocol/1

Description

current_protocol (Protocol)

Enumerates, by backtracking, all currently defined protocols. All protocols are found, either static, dynamic, or built-

m.

Modes and number of proofs

current_protocol (?protocol_identifier) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Protocol)

Examples

| ?- current_protocol (listp).

See also:

abolish_protocol/l, create_protocol/3, protocol_property/2, conforms_to_protocol/2-3,
implements_protocol/2-3

2.4.2 Enumerating objects, categories and protocols properties

category_property/2

extends_protocol/2-3,

2.4. Built-in predicates

169

The Logtalk Handbook, Release v3.21.0

Description

category_property (Category, Property)

Enumerates, by backtracking, the properties associated with the defined categories. The valid category properties are
listed in the language gramar section on entity properties.

Modes and number of proofs

category property (?category_identifier, 7?category_property) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error (category_identifier, Category)
Property is neither a variable nor a callable term:
type_error (callable, Property)
Property is a callable term but not a valid category property:

domain_error (category_property, Property)

Examples

| ?- category_ property (Category, dynamic).

See also:

abolish_category/l, create_category/4, current_category/l, complements_object/2, extends_category/2-3,
imports_category/2-3

object_property/2

Description

object_property (Object, Property)

Enumerates, by backtracking, the properties associated with the defined objects. The valid object properties are listed
in the language gramar section on entity properties.

Modes and number of proofs

object_property (?object_identifier, ?object_property) - zero_or_more

170 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)

Property is neither a variable nor a callable term:
type_error (callable, Property)

Property is a callable term but not a valid object property:
domain_error (object_property, Property)

Examples

| ?- object_property(list, Property).

See also:

abolish_object/1, create_object/4, current_object/1, extends_object/2-3, instantiates_class/2-3, specializes_class/2-3,
complements_object/2

protocol_property/2

Description

protocol_property (Protocol, Property)

Enumerates, by backtracking, the properties associated with the currently defined protocols. The valid protocol prop-
erties are listed in the language gramar section on entity properties.

Modes and number of proofs

protocol_property (?protocol_identifier, ?protocol_property) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Protocol)

Property is neither a variable nor a callable term:
type_error (callable, Property)

Property is a callable term but not a valid protocol property:
domain_error (protocol_property, Property)

Examples

| ?- protocol_property(listp, Property).

2.4. Built-in predicates 171

The Logtalk Handbook, Release v3.21.0

See also:

abolish_protocol/l, create_protocol/3, current_protocol/l, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.3 Creating new objects, categories and protocols

create_category/4

Description

create_category (Identifier, Relations, Directives, Clauses)

Creates a new, dynamic category. This predicate is often used as a primitive to implement high-level category creation
methods.

Note that, when opting for runtime generated category identifiers, it’s possible to run out of identifiers when using
a backend Prolog compiler with bounded integer support. The portable solution, when creating a large number of
dynamic category in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be declared syn-
chronized in order to avoid race conditions.

Modes and number of proofs

create_category (?category_identifier, @list (category_relation), @list (category_
—directive), (@list (clause)) - one

Errors

Relations, Directives, or Clauses is a variable:
instantiation_error
Identifier is neither a variable nor a valid category identifier:
type_error (category_identifier, Identifier)
Identifier is already in use:
permission_error (modify, category, Identifier)
permission_error (modify, object, Identifier)
permission_error (modify, protocol, Identifier)
Relations is neither a variable nor a proper list:
type_error (list, Relations)
Repeated entity relation clause:
permission_error (repeat, entity_relation, implements/1)
permission_error (repeat, entity_relation, extends/1)
permission_error (repeat, entity_relation, complements/1)
Directives is neither a variable nor a proper list:
type_error(list, Directives)
Clauses is neither a variable nor a proper list:
type_error (list, Clauses)

172 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Examples

?— create_category (
tolerances,
[implements (comparing)],
(1,
[epsilon(le-15), (equal (X, Y) :— epsilon(E), abs(X-Y) =< E)]

See also:

abolish_category/l, category_property/2, current_category/l, complements_object/2, extends_category/2-3,
imports_category/2-3

create_object/4

Description

create_object (Identifier, Relations, Directives, Clauses)

Creates a new, dynamic object. The word object is used here as a generic term. This predicate can be used to create
new prototypes, instances, and classes. This predicate is often used as a primitive to implement high-level object
creation methods.

Note that, when opting for runtime generated object identifiers, it’s possible to run out of identifiers when using
a backend Prolog compiler with bounded integer support. The portable solution, when creating a large number of
dynamic objects in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be declared syn-
chronized in order to avoid race conditions.

Modes and number of proofs

create_obiject (?Yobject_identifier, (@list (object_relation), @list (object_directive),
—@list (clause)) - one

Errors

Relations, Directives, or Clauses is a variable:
instantiation_error
Identifier is neither a variable nor a valid object identifier:
type_error (object_identifier, Identifier)
Identifier is already in use:
permission_error (modify, category, Identifier)
permission_error (modify, object, Identifier)
permission_error (modify, protocol, Identifier)
Relations is neither a variable nor a proper list:
type_error (list, Relations)
Repeated entity relation clause:

permission_error (repeat, entity_relation, implements/1)

2.4. Built-in predicates 173

The Logtalk Handbook, Release v3.21.0

permission_error (repeat,
permission_error (repeat,
permission_error (repeat,

permission_error (repeat,

entity_relation,
entity_relation,
entity_relation,
entity_relation,

imports/1)
extends/1)
instantiates/1)
specializes/1)

Directives is neither a variable nor a proper list:
type_error (list, Directives)

Clauses is neither a variable nor a proper list:

type_error(list, Clauses)
Examples
% create a stand-alone object (a prototype):
?— create_object (

translator,
(1,
[public (int/2) 1,
[int (0O, =zero)]

cr e a pr OC e ae
?— create_object (
mickey,
[extends (mouse)],
[public(alias/1)1],
]

[alias (mortimer)

) .
create a class
?— create_object (
pl,
[instantiates (person)],
(1,
[name ('Paulo Moura'), age(42)]
) .
create a subclass:

?— create_object (
hovercraft,
[specializes (vehicle)],

[public([propeller/2, fan/21)1,
[]
) .
create an object with an initialization goal
?— create_object (
runner,
[instantiates (runners)],
[initialization(::start)],
[length (22), time (60)]
) .
5 Create an Z?bj'ﬁ(‘f 5535}7})(\,1‘1‘71“5{] *AK 1C preaic t D) laratio
?— create_object (

database,

(continues on next page)

174 Chapter 2.

Reference Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

[1,
[set_logtalk flag(dynamic_declarations, allow)],

(]

See also:

abolish_object/1, current_object/1, object_property/2, extends_object/2-3, instantiates_class/2-3, specializes_class/2-
3, complements_object/2

create_protocol/3

Description

create_protocol (Identifier, Relations, Directives)

Creates a new, dynamic, protocol. This predicate is often used as a primitive to implement high-level protocol creation
methods.

Note that, when opting for runtime generated protocol identifiers, it’s possible to run out of identifiers when using
a backend Prolog compiler with bounded integer support. The portable solution, when creating a large number of
dynamic protocols in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be declared syn-
chronized in order to avoid race conditions.

Modes and number of proofs

create_protocol (?protocol_identifier, @list (protocol_relation), @list (protocol_
—directive)) - one

Errors

Either Relations or Directives is a variable:
instantiation_error
Identifier is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Identifier)
Identifier is already in use:
permission_error (modify, category, Identifier)
permission_error (modify, object, Identifier)
permission_error (modify, protocol, Identifier)
Relations is neither a variable nor a proper list:
type_error (list, Relations)
Repeated entity relation clause:
permission_error (repeat, entity_relation, extends/1)
Directives is neither a variable nor a proper list:
type_error(list, Directives)

2.4. Built-in predicates 175

The Logtalk Handbook, Release v3.21.0

Examples

?— create_protocol (
logging,
[extends (monitoring)],
[public([log_file/1, log_on/0, log_off/0])]

See also:

abolish_protocol/l, current_protocol/l, protocol_property/2, conforms_to_protocol/2-3,
implements_protocol/2-3

2.4.4 Abolishing objects, categories and protocols

abolish_category/1

Description

extends_protocol/2-3,

abolish_category (Category)

Abolishes a dynamic category.

Modes and number of proofs

abolish category (+tcategory_identifier) - one

Errors

Category is a variable:
instantiation_error
Category is neither a variable nor a valid category identifier:
type_error (category_identifier, Category)
Category is an identifier of a static category:
permission_error (modify, static_category, Category)
Category does not exist:
existence_error (category, Category)

Examples

| ?- abolish_category (monitoring).

See also:

category_property/2, create_category/4, current_category/l — complements_object/2,
imports_category/2-3

extends_category/2-3,

176 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

abolish_object/1

Description

abolish_object (Object)

Abolishes a dynamic object.

Modes and number of proofs

abolish_ object (+tobject_identifier) - one

Errors

Object is a variable:
instantiation_error
Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)
Object is an identifier of a static object:
permission_error (modify, static_object, Object)
Object does not exist:
existence_error (object, Object)

Examples

| ?- abolish_object (list) .

See also:

create_object/4, current_object/1, object_property/2, extends_object/2-3, instantiates_class/2-3, specializes_class/2-
3, complements_object/2

abolish_protocol/1

Description

abolish_protocol (Protocol)

Abolishes a dynamic protocol.

Modes and number of proofs

abolish protocol (€protocol_identifier) - one

2.4. Built-in predicates 177

The Logtalk Handbook, Release v3.21.0

Errors

Protocol is a variable:
instantiation_error
Protocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Protocol)
Protocol is an identifier of a static protocol:
permission_error (modify, static_protocol, Protocol)
Protocol does not exist:

existence_error (protocol, Protocol)

Examples

| ?- abolish_protocol (listp) .

See also:

create_protocol/3, current_protocol/l, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.5 Objects, categories, and protocols relations

extends_object/2-3

Description

extends_object (Prototype, Parent)
extends_obiject (Prototype, Parent, Scop

®

)

Enumerates, by backtracking, all pairs of objects such that the first one extends the second. The relation scope is
represented by the atoms public, protected, and private.

Modes and number of proofs

extends_object (Yobject_identifier, ?object_identifier) - zero_or_more
extends_object (Yobject_identifier, ?object_identifier, ?scope) - zero_or_more
Errors

Prototype is neither a variable nor a valid object identifier:
type_error (object_identifier, Prototype)
Parent is neither a variable nor a valid object identifier:
type_error (object_identifier, Parent)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:
domain_error (scope, Scope)

178 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Examples

o €Il e oojects derived I om the state_

?— extends_object (Object, state_space).

o A L+ ob-ects bi N
o €I 1te 007 5 Pl leriv

| ?- extends_object (Object, list,

See also:

current_object/1, instantiates_class/2-3, specializes_class/2-3

extends_protocol/2-3

Description

extends_protocol (Protocol, ParentProtocol)
extends_protocol (Protocol, ParentProtocol, Scope)

Enumerates, by backtracking, all pairs of protocols such that the first one extends the second. The relation scope is
represented by the atoms public, protected, and private.

Modes and number of proofs

extends_protocol (?protocol_identifier, ?protocol_identifier) - zero_or_more
extends_protocol (?protocol_identifier, ?protocol_identifier, ?scope) - zero_or_more
Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Protocol)
ParentProtocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, ParentProtocol)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:
domain_error (scope, Scope)

Examples

rate the 1t
racte tAhne

~ocols extended bv
COCOlSsS extenaeda DLy

er L C 1(1 ctne
?— extends_protocol (listp, Protocol).

te protocols that privately extend

| ?- extends_protocol (Protocol, termp, private).

See also:

current_protocol/l, implements_protocol/2-3, conforms_to_protocol/2-3

2.4. Built-in predicates 179

The Logtalk Handbook, Release v3.21.0

extends_category/2-3

Description

ParentCategory)

ParentCategory, Scope)

Enumerates, by backtracking, all pairs of categories such that the first one extends the second. The relation scope is
represented by the atoms public, protected, and private.

Modes and number of proofs

extends_category (?category_identifier, ?category_identifier) - zero_or_more
extends_category (?category_identifier, 7?category_identifier, ?scope) - zero_or_more
Errors

Category is neither a variable nor a valid protocol identifier:
type_error (category_identifier, Category)
ParentCategory is neither a variable nor a valid protocol identifier:
type_error (category_identifier, ParentCategory)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:
domain_error (scope, Scope)

Examples

% en ate the categories exte

?— extends_category (derailleur,

% enumerate categories

€ ories

| ?- extends_category (Categc

See also:

current_category/l, complements_object/2, imports_category/2-3

implements_protocol/2-3

Description

implements_protocol (Object, Protc
implements_protocol (Category, Protocol)

implements_protocol (Object, Protocol, Scope)
implements_protocol (Category, Protocol, Scope)

180 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Enumerates, by backtracking, all pairs of entities such that an object or a category implements a protocol. The re-
lation scope is represented by the atoms public, protected, and private. This predicate only returns direct
implementation relations; it does not implement a transitive closure.

Modes and number of proofs

implements_protocol (?object_identifier, ?protocol_identifier) - zero_or_more
implements_protocol (?category_identifier, ?protocol_identifier) - zero_or_more
implements_protocol (?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
implements_protocol (?category_identifier, ?protocol_identifier, ?scope) - zero_or_more
Errors

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)
Category is neither a variable nor a valid category identifier:
type_error (category_identifier, Category)
Protocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Protocol)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:
domain_error (scope, Scope)

Examples

~hoa~l Fhat +he T1ae+ obh1ecrt 117
cneckKk tnat the 11St opbject 1n

?— implements_protocol (list,

>mencs tne L1Stp

listp) .

11S8T object pu

cneckKk thnat

| ?- implements_protocol (list, listp, public).

1Cly

See also:

current_protocol/1, conforms_to_protocol/2-3

conforms_to_protocol/2-3

Description

conforms_to_protocol (Object, Protocol)

conforms_to_protocol (Category, Protocol)
conforms_to_protocol (C Protoc
conforms_to_protocol (Cz

egory, Prot

2.4. Built-in predicates 181

The Logtalk Handbook, Release v3.21.0

Enumerates, by backtracking, all pairs of entities such that an object or a category conforms to a protocol. The relation
scope is represented by the atoms public, protected, and private. This predicate implements a transitive

closure for the protocol implementation relation.

Modes and number of proofs

conforms_to_protocol (Yobject_identifier, ?protocol_identifier) - zero_or_more
conforms_to_protocol (?category_identifier, ?protocol_identifier) - zero_or_more
conforms_to_protocol (?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
conforms_to_protocol (?category_identifier, ?protocol_identifier, ?scope) - zero_or_
—more

Errors

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)
Category is neither a variable nor a valid category identifier:
type_error (category_identifier, Category)
Protocol is neither a variable nor a valid protocol identifier:
type_error (protocol_identifier, Protocol)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:

domain_error (scope, Scope)

Examples

fe obdects and
ate opjects anad

?— conforms_to_protocol (Object, listp).

Arimerata ARSa~ta anA -~ A rioa Fhat mriuatel
enumerate objects ana categories tnat privately

| ?- conforms_to_protocol (Object, listp, private).

tne L1STp protocol:

See also:

current_protocol/l, implements_protocol/2-3

complements_object/2

Description

complements_object (Category, Object)

Enumerates, by backtracking, all category—object pairs such that the category explicitly complements the object.

182

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

complements_object (?category_identifier, 7?object_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error (category_identifier, Prototype)

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Parent)

Examples

cneckKk tnat the Ic 1nNg category complements the em

| ?- complements_object (logging, employee).

See also:

current_category/l, imports_category/2-3

imports_category/2-3

Description

imports_category (Object, Category)

imports_category (Object, Category, Scope)

Enumerates, by backtracking, importation relations between objects and categories. The relation scope is represented
by the atoms public, protected, and private.

Modes and number of proofs

imports_category (?object_identifier, ?category_identifier) - zero_or_more
imports_category (?object_identifier, ?category_identifier, ?scope) - zero_or_more
Errors

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)
Category is neither a variable nor a valid category identifier:
type_error (category_identifier, Category)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:

domain_error (scope, Scope)

2.4. Built-in predicates 183

The Logtalk Handbook, Release v3.21.0

Examples

O ~hark +Fhat +he sref A4
o ChecKk that the Xrerli_dil

?— imports_category (xref_diagram, diagram).

>t Imports

% er ate the obje

| ?- imports_category

See also:

current_category/l, complements_object/2

instantiates_class/2-3

Description

instantiates_class (Instance, Class)
instantiates_class (Instance, Class, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one instantiates the second. The relation scope is
represented by the atoms public, protected, and private.

Modes and number of proofs

instantiates_class (?object_identifier, ?object_identifier) - zero_or_more
instantiates_class (?object_identifier, ?object_identifier, 7?scope) - zero_or_more
Errors

Instance is neither a variable nor a valid object identifier:
type_error (object_identifier, Instance)
Class is neither a variable nor a valid object identifier:
type_error (object_identifier, Class)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:
domain_error (scope, Scope)

Examples

check that the water_jug 1is an 1ir
?— instantiates_class (water_jug,

1tiation relation is p

?— instantiates_class (Space

, state_space, public).

184 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

See also:

current_object/1, extends_object/2-3, specializes_class/2-3

specializes_class/2-3

Description

specializes_class(Class, Superclass)
specializes_class(Class, Superclass, Sc

Enumerates, by backtracking, all pairs of objects such that the first one specializes the second. The relation scope is
represented by the atoms public, protected, and private.

Modes and number of proofs

specializes_class (?object_identifier, ?object_identifier) - zero_or_more
specializes_class (?object_identifier, ?object_identifier, ?”scope) - zero_or_more
Errors

Class is neither a variable nor a valid object identifier:
type_error (object_identifier, Class)
Superclass is neither a variable nor a valid object identifier:
type_error (object_identifier, Superclass)
Scope is neither a variable nor an atom:
type_error (atom, Scope)
Scope is an atom but an invalid entity scope:

domain_error (scope, Scope)

Examples

sSpecialization relatlo S pu

| ?- specializes_class (Subclass, state_space, public).

See also:

current_object/1, extends_object/2-3, instantiates_class/2-3

2.4.6 Event handling

abolish_events/5

2.4. Built-in predicates 185

The Logtalk Handbook, Release v3.21.0

Description

abolish_events (Event, Object, Message, Sender, Monitor)

Abolishes all matching events. The two types of events are represented by the atoms before and after. When the
predicate is called with the first argument unbound, both types of events are abolished.

Modes and number of proofs

abolish_events (Cterm, (@term, (@term, (@term, @term) - one

Errors

Event is neither a variable nor a valid event identifier:
type_error (event, Event)

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)

Message is neither a variable nor a callable term:
type_error (callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error (object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:
type_error (object_identifier, Monitor)

Examples

er" obi

gger 4

ugger) .

| ?- abolish events

See also:

current_event/S, define_events/5, before/3, after/3

current_event/5

Description

current_event (Event, Object, Message, Sender, Monitor)

Enumerates, by backtracking, all defined events. The two types of events are represented by the atoms before and
after.

186 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

current_event (?event, ?term, ?term, ?term, 7object_identifier) - zero_or_more

Errors

Event is neither a variable nor a valid event identifier:
type_error (event, Event)

Object is neither a variable nor a valid object identifier:
type_error (object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error (object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:
type_error (object_identifier, Monitor)

Examples

v AR Sact -

| ?- current_event (Event,

wder, debugger) .

See also:

abolish_events/S, define_events/5, before/3, after/3

define_events/5

Description

define_events (Event, Object, Message, Sender, Monitor)

Defines a new set of events. The two types of events are represented by the atoms before and after. When the
predicate is called with the first argument unbound, both types of events are defined. The object Monitor must define
the event handler methods required by the Event argument.

Modes and number of proofs

define_events (lterm, (@term, (@term, (@term, +object_identifier) - one

Errors

Event is neither a variable nor a valid event identifier:
type_error (event, Event)
Object is neither a variable nor a valid object identifier:

2.4. Built-in predicates 187

The Logtalk Handbook, Release v3.21.0

type_error (object_identifier, Object)
Message is neither a variable nor a callable term:
type_error (callable, Message)
Sender is neither a variable nor a valid object identifier:
type_error (object_identifier, Sender)
Monitor is a variable:
instantiation_error
Monitor is neither a variable nor a valid object identifier:
existence_error (object_identifier, Monitor)
Monitor does not define the required be fore /3 method:
existence_error (procedure, before/3)
Monitor does not define the required after/3 method:
existence_error (procedure, after/3)

Examples

he 1ist ec

| ?- define_events(, list, member(,), _ , debugger).

See also:

abolish_events/5, current_event/5, before/3, after/3

2.4.7 Multi-threading

threaded/1

Description

threaded (Goals)

Proves each goal in a conjunction (disjunction) of goals in its own thread. This predicate is deterministic and opaque
to cuts. The predicate argument is not flattened.

When the argument is a conjunction of goals, a call to this predicate blocks until either all goals succeed, one of the
goals fail, or one of the goals generate an exception; the failure of one of the goals or an exception on the execution of
one of the goals results in the termination of the remaining threads. The predicate call is true iff all goals are true.

When the argument is a disjunction of goals, a call to this predicate blocks until either one of the goals succeeds, all the
goals fail, or one of the goals generate an exception; the success of one of the goals or an exception on the execution
of one of the goals results in the termination of the remaining threads. The predicate call is true iff one of the goals is
true.

When the predicate argument is neither a conjunction not a disjunction of goals, no threads are used. In this case, the
predicate call is equivalent to a once/ 1 predicate call.

188 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

threaded (+callable) - zero_or_one

Errors

Goals is a variable:
instantiation_error

A goal in Goals is a variable:
instantiation_error

Goals is neither a variable nor a callable term:
type_error(callable, Goals)

A goal Goal in Goals is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Prove a conjunction of goals, each one in its own thread:
threaded ((Goal, Goals))

Prove a disjunction of goals, each one in its own thread:
threaded ((Goal; Goals))

See also:

threaded_call/1-2, threaded_once/l-2, threaded_ignore/l, synchronized/I

threaded_call/1-2

Description

threaded_call (Goal)
threaded_call (Goal, Tag)

Proves Goal asynchronously using a new thread. The argument can be a message sending goal. Calls to this predicate
always succeeds and return immediately. The results (success, failure, or exception) are sent back to the message queue
of the object containing the call (t/is); they can be retrieved by calling the threaded_exit/1-2 predicate.

The variant threaded_call/2 returns a threaded call identifier tag that can be used with the threaded_exit/1-2
predicate. Tags shall be regarded as opaque terms; users shall not rely on its type.

Modes and number of proofs

threaded call (Ccallable) - one
threaded call (Ccallable, ——nonvar) - one

2.4. Built-in predicates 189

The Logtalk Handbook, Release v3.21.0

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error (callable, Goal)

Tag is not a variable:
type_error (variable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_call (Goal)

Prove : : Message asynchronously in a new thread:
threaded_call (::Message)

Prove Object : : Message asynchronously in a new thread:
threaded_call (Object: :Message)

See also:

threaded_exit/1-2, threaded_ignore/l, threaded_once/1-2, threaded_peek/1-2, threaded/1, synchronized/]

threaded_once/1-2

Description

threaded_once (Goa
threaded once (G

Taqg)

Proves Goal asynchronously using a new thread. Only the first goal solution is found. The argument can be a message
sending goal. This call always succeeds. The result (success, failure, or exception) is sent back to the message queue
of the object containing the call (t/is).

The variant threaded_once/2 returns a threaded call identifier tag that can be used with the threaded_exit/1-2
predicate. Tags shall be regarded as opaque terms; users shall not rely on its type.

Modes and number of proofs

threaded once(Ccallable) - one
threaded_once (Ccallable, —--nonvar) - one
Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

190 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Tag is not a variable:

type_error (variable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_once (Goal)

Prove : :Message asynchronously in a new thread:
threaded_once (::Message)

Prove Object : : Message asynchronously in a new thread:
threaded_once (Object: :Message)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/l, threaded_peek/1-2, threaded/1, synchronized/I

threaded_ignore/1

Description

threaded_ignore (Goal)

Proves Goal asynchronously using a new thread. Only the first goal solution is found. The argument can be a message
sending goal. This call always succeeds, independently of the result (success, failure, or exception), which is simply
discarded instead of being sent back to the message queue of the object containing the call (7his).

Modes and number of proofs

threaded_ignore((lcallable) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_ignore (Goal)

Prove : :Message asynchronously in a new thread:
threaded_ignore (: :Message)

Prove Object : : Message asynchronously in a new thread:
threaded_ignore (Object: :Message)

2.4. Built-in predicates 191

The Logtalk Handbook, Release v3.21.0

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_once/1-2, threaded_peek/1-2, threaded/1, synchronized/I

threaded_exit/1-2

Description

threaded exit (Goa
threaded_exit (Goal,

Tag)

Retrieves the result of proving Goal in a new thread. This predicate blocks execution until the reply is sent to the this
message queue by the thread executing the goal. When there is no thread proving the goal, the predicate generates an
exception. This predicate is non-deterministic, providing access to any alternative solutions of its argument.

The argument of this predicate should be a variant of the argument of the corresponding threaded _call/I-2 call. When
the predicate argument is subsumed by the threaded_call/1 call argument, the threaded_exit/1 call will
succeed iff its argument is a solution of the (more general) goal.

The variant threaded_exit /2 accepts a threaded call identifier tag generated by the calls to the threaded_call/l-2
and threaded_once/I-2 predicates. Tags shall be regarded as an opaque term; users shall not rely on its type.

Modes and number of proofs

threaded exit (+tcallable) - zero_or_more
threaded_exit (+callable, +nonvar) - zero_or_more
Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

no thread is running for proving Goal:
existence_error (goal_thread, Goal)

Tag is a variable:

instantiation_error

Examples

To retrieve an asynchronous goal proof result:
threaded_exit (Goal)

To retrieve an asynchronous message to self result:
threaded_exit (::Goal)

To retrieve an asynchronous message result:
threaded_exit (Object::Goal)

See also:

192 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

threaded_call/l-2, threaded_ignore/l, threaded_once/1-2, threaded_peek/1-2, threaded/]

threaded_peek/1-2

Description

threaded peek (Goal)
threaded_peek (Goal, Tag)

Checks if the result of proving Goal in a new thread is already available. This call succeeds or fails without blocking
execution waiting for a reply to be available.

The argument of this predicate should be a variant of the argument of the corresponding threaded _call/I-2 call. When
the predicate argument is subsumed by the threaded_call/1 call argument, the threaded_peek/1 call will
succeed iff its argument unifies with an already available solution of the (more general) goal.

The variant threaded_peek/2 accepts a threaded call identifier tag generated by the calls to the threaded _call/l-2
and threaded_once/I-2 predicates. Tags shall be regarded as an opaque term; users shall not rely on its type.

Modes and number of proofs

threaded_peek (+callable) - zero_or_one
threaded_peek (+callable, +nonvar) - zero_or_one
Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is a variable:

instantiation_error

Examples

To check for an asynchronous goal proof result:
threaded_peek (Goal)

To check for an asynchronous message to self result:
threaded_peek (::Goal)

To check for an asynchronous message result:
threaded_peek (Object: :Goal)

See also:

threaded_call/l-2, threaded_exit/1-2, threaded_ignore/l, threaded_once/l-2, threaded/1

2.4. Built-in predicates 193

The Logtalk Handbook, Release v3.21.0

threaded_wait/1

Description

threaded wait (Term)
threaded wait ([Term| Terms])

Suspends the thread making the call until a notification is received that unifies with Term. The call must be made
within the same object (this) containing the calls to the threaded_notify/I predicate that will eventually send the
notification. The argument may also be a list of notifications, [Term| Terms]. In this case, the thread making the
call will suspend until all notifications in the list are received.

Modes and number of proofs

threaded wait (?term) - one
threaded wait (+1list (term)) — one
Errors

(none)

Examples

t until the "data available" n it

wal uncil Tl 1_dvall L€ ricaction 1s recei

., threaded wait (data_available),

See also:

threaded_notify/]

threaded_notify/1

Description

threaded_notify (Term)
threaded notify([Term| Terms])

Sends Term as a notification to any thread suspended waiting for it in order to proceed. The call must be made within
the same object (t/is) containing the calls to the threaded_wait/I predicate waiting for the notification. The argument
may also be a list of notifications, [Term| Terms]. In this case, all notifications in the list will be sent to any
threads suspended waiting for them in order to proceed.

Modes and number of proofs

threaded_notify(Cterm) - one
threaded_notify(@list (term)) - one

194 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

(none)

Examples

alm nAatiFimatrion:

aole notiric io0n:

., threaded notify(data_available),

See also:

threaded_wait/1

2.4.8 Multi-threading engines
threaded_engine_create/3

Description

threaded_engine_create (Anc

verTemplate, Goal, Engine)

Creates a new engine for proving the given goal and defines an answer template for retrieving the goal solution
bindings. A message queue for passing arbitrary terms to the engine is also created. If the name for the engine is not
given, a unique name is generated and returned. Engine names shall be regarded as opaque terms; users shall not rely
on its type.

Modes and number of proofs

threaded engine_create (@term, (@callable, (@nonvar) - one
threaded_engine_create (@term, @callable, —--nonvar) - one
Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error (callable, Goal)

Engine is the name of an existing engine:

permission_error (create, engine, Engine)

Examples

create a new engine for finc] me 2 1ist

?— threaded_engine_create (X, member (X

[1,2,3]1), worker_1).

2.4. Built-in predicates 195

The Logtalk Handbook, Release v3.21.0

See also:

threaded_engine_destroy/I, threaded_engine_self/1, threaded_engine/l,
threaded_engine_next_reified/2

threaded_engine_destroy/1

Description

threaded_engine_next/2,

threaded_engine_destroy (Engine)

Stops and destroys an engine.

Modes and number of proofs

threaded_engine_destroy (Gnonvar) - one

Errors

Engine is a variable:
instantiation_error
Engine is neither a variable nor the name of an existing engine:

existence_error (engine, Engine)

Examples

p the worker_ 1 enc e

?— threaded _engine_destroy (worker_1).
¢ stop all engines:

?— forall (

threaded_engine (Engine),
threaded_engine_destroy (Engine)

See also:

threaded_engine_create/3, threaded_engine_self/1, threaded_engine/l

threaded_engine/1

Description

threaded_engine (Engine)

Enumerates, by backtracking, all existing engines. Engine names shall be regarded as opaque terms; users shall not

rely on its type.

196

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

threaded_engine (?nonvar) - zero_or_more

Errors

(none)

Examples

check that the worker_1 engine exists:
?— threaded_engine (worker_1) .

— oo

write the names of all existing engines:
?— forall (
threaded_engine (Engine),
(writeq(Engine), nl)

— oo

See also:

threaded_engine_create/3, threaded_engine_self/1, threaded_engine_destroy/1

threaded_engine_self/1

Description

threaded_engine_self (Engine)

Queries the name of engine calling the predicate.

Modes and number of proofs

threaded_engine_self (?nonvar) - zero_or_one

Errors

(none)

Examples

% find the name of the engine making the query:
., threaded_engine_self (Engine),

$ check if the the engine making the query 1s worker_ 1:
., threaded engine_self (worker_1),

2.4. Built-in predicates 197

The Logtalk Handbook, Release v3.21.0

See also:

threaded_engine_create/3, threaded_engine_destroy/1, threaded_engine/l

threaded_engine_next/2

Description

threaded_engine_next (Engine, Answer)

Retrieves the next answer from an engine. This predicate blocks until an answer becomes available. The predicate
fails when there are no more solutions to the engine goal. If the engine goal throws an exception, calling this predicate
will re-throw the exception and subsequent calls will fail.

Modes and number of proofs

threaded_engine_next (@nonvar, ?term) - zero_or_one

Errors

Engine is a variable:
instantiation_error
Engine is neither a variable nor the name of an existing engine:

existence_error (engine, Engine)

Examples

agetr the next 2 e From Fhe w
get tne next a er rrom the w

| ?- threaded engine_next (worker_1, Answer).

See also:

threaded_engine_create/3, threaded_engine_next_reified/2, threaded_engine_yield/l

threaded_engine_next_reified/2

Description

threaded_engine_next_reified (Engine, Answer)

Retrieves the next reified answer from an engine. This predicate always succeeds and blocks until an answer becomes
available. Answers are returned using the terms the (Answer), no, and exception (Error).

Modes and number of proofs

198 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

threaded_engine_next_reified(Clnonvar, ?nonvar) - one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error (engine, Engine)

Examples

get the next answer from the worker 1 engine:
| ?- threaded _engine_next_reified (worker_1, Answer).
See also:

threaded_engine_create/3, threaded_engine_next/2, threaded_engine_yield/l

threaded_engine_yield/1

Description

threaded_engine_yield (Answer)

Returns an answer independent of the solutions of the engine goal. Fails if not called from within an engine. This
predicate is usually used when the engine goal is a call to a recursive predicate processing terms from the engine term

queue.

This predicate blocks until the returned answer is consumed.

Note that this predicate should not be called as the last element of a conjunction resulting in an engine goal solution as,
in this case, an answer will always be returned. For example, instead of (threaded_engine_yield (ready) ;

member (X, [1,2,3])) use (X=ready; member (X, [1

Modes and number of proofs

r2,31)).

threaded engine_yield(@term) - zero_or_one

Errors

(none)

Examples

retilr o t+he

., threaded_engine

2.4. Built-in predicates

199

The Logtalk Handbook, Release v3.21.0

See also:

threaded_engine_create/3, threaded_engine_next/2, threaded_engine_next_reified/2

threaded_engine_post/2

Description

threaded_engine_post (Engine, Term)

Posts a term to the engine term queue.

Modes and number of proofs

threaded_engine_post (@nonvar, @term) - one

Errors

Engine is a variable:
instantiation_error
Engine is neither a variable nor the name of an existing engine:

existence_error (engine, Engine)

Examples

> yhat Fhe atrom "readu" +o +h “rlker 1 enalne alielie .
s post the atom ready CO The worketr L engine queue:

| ?- threaded_engine_post (worker_1, ready).

See also:

threaded_engine_fetch/I

threaded_engine_fetch/1

Description

threaded_engine_fetch (Term)

Fetches a term from the engine term queue. Blocks until a term is available. Fails if not called from within an engine.

Modes and number of proofs

threaded_engine_fetch (?term) - zero_or_one

200 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

(none)

Examples

fetrech a ferm from the enaine
ectcn a ter I cn eng

., threaded engine_ fetch (Term),

See also:

threaded_engine_post/2

2.4.9 Compiling and loading source files
logtalk_compile/1

Description

logtalk compile (F'ile)
logtalk_ compile (Files)

Compiles to disk a source file or a list of source files using the default compiler flag values. The Logtalk source file
name extension (by default, . Lgt) can be omitted. Source file paths can be absolute, relative to the current directory,
or use library notation. This predicate can also be used to compile Prolog source files as Logtalk source code. When no
recognized Logtalk or Prolog extension is specified, the compiler tries first to append a Logtalk source file extension
and then a Prolog source file extension. If that fails, the compiler tries to use the file name as-is.

When this predicate is called from the top-level, relative source file paths are resolved using the current working
directory. When the calls are made from a source file, relative source file paths are resolved using the source file
directory.

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails when
errors are found during compilation of a source file.

Modes and number of proofs

logtalk compile (@source_file_name) - zero_or_one
logtalk _compile (@list (source_file_name)) - zero_or_one
Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file:
type_error (source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:

2.4. Built-in predicates 201

The Logtalk Handbook, Release v3.21.0

existence_error (library, Library)
File or an element File of the Files list does not exist:

existence_error (file, File)

Examples

S] 7} Hirectorsy

?— logtalk_ load(types (tree)) .

rant directorv:

ec in he

| ?- logtalk compile([listp, list]).

See also:

logtalk_compile/2, logtalk_load/l, logtalk_load/2, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

logtalk_compile/2

Description

logtalk _compile(File, Flags)
logtalk compile(F'iles, Flags)

Compiles to disk a source file or a list of source files using a list of compiler flags. The Logtalk source file name
extension (by default, . 1gt) can be omitted. Source file paths can be absolute, relative to the current directory, or
use library notation. This predicate can also be used to compile Prolog source files as Logtalk source code. When no
recognized Logtalk or Prolog extension is specified, the compiler tries first to append a Logtalk source file extension
and then a Prolog source file extension. If that fails, the compiler tries to use the file name as-is. Compiler flags are
represented as flag(value). For a description of the available compiler flags, please see Compiler flags in the User
Manual.

When this predicate is called from the top-level, relative source file paths are resolved using the current working
directory. When the calls are made from a source file, relative source file paths are resolved by default using the source
file directory (unless a relative_to flag is passed).

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails when
errors are found during compilation of a source file.

Warning: The compiler flags specified in the second argument only apply to the files listed in the first argument.
Notably, if you are compiling a loader file, the flags only apply to the loader file itself.

202 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

logtalk compile (€source_file_name, @list (compiler_flag)) - zero_or_one

logtalk compile (C@list (source_file_name), (@list (compiler_flag))

- zero_or_one

Errors

File is a variable:
instantiation_error
Files is a variable or a list with an element which is a variable:

instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:

type_error (source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:

existence_error (library, Library)

File or an element File of the Files list, does not exist:
existence_error (file, File)

Flags is a variable or a list with an element which is a variable:
instantiation_error

Flags is neither a variable nor a proper list:
type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:
type_error (compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:
permission_error (modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:
domain_error (flag_value, Flag+Value)

Examples

o C 1T d1 Ctory u g qQerc

lk_compiie(lisé, [n.

?— logta

~e_Qgata 1lag turnead

pes (tree), [source_data(on)]).

C ent airectoi

C € wa SUp1

rcaprilic

| ?- logtalk _compile(file_system, [portability(silent)]).

See also:

logtalk_compile/l, logtalk_load/l, logtalk_load/2, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

logtalk_load/1

2.4. Built-in predicates

203

The Logtalk Handbook, Release v3.21.0

Description

logtalk_load(File)
logtalk load(Files)

Compiles to disk and then loads to memory a source file or a list of source files using the default compiler flag values.
The Logtalk source file name extension (by default, . 1gt) can be omitted. Source file paths can be absolute, relative
to the current directory, or use library notation. This predicate can also be used to compile Prolog source files as
Logtalk source code. When no recognized Logtalk or Prolog extension is specified, the compiler tries first to append
a Logtalk source file extension and then a Prolog source file extension. If that fails, the compiler tries to use the file
name as-is.

When this predicate is called from the top-level, relative source file paths are resolved using the current working
directory. When the calls are made from a source file, relative source file paths are resolved using the source file
directory.

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails when
errors are found during compilation of a source file.

Depending on the backend Prolog compiler, the shortcuts {File} or {Filel, File2, ...} may be used in
alternative. Check the adapter files for the availability of these shortcuts as they are not part of the language (and thus
should only be used at the top-level interpreter).

Modes and number of proofs

logtalk_ load (@source_file_name) - zero_or_one
logtalk load(C@list (source_file_name)) - zero_or_one
Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error (source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error (library, Library)

File or an element File of the Files list, does not exist:

existence_error (file, File)

Examples

(continues on next page)

204 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

?— logtalk_load(types (tree)) .

See also:

logtalk_compile/l, logtalk_compile/2, logtalk_load/2, logtalk_make/0, logtalk_make/l, logtalk_library_path/2

logtalk_load/2

Description

logtalk_load(File,
logtalk_load(Files,

Compiles to disk and then loads to memory a source file or a list of source files using a list of compiler flags. The
Logtalk source file name extension (by default, . 1gt) can be omitted. Compiler flags are represented as flag(value).
This predicate can also be used to compile Prolog source files as Logtalk source code. When no recognized Logtalk or
Prolog extension is specified, the compiler tries first to append a Logtalk source file extension and then a Prolog source
file extension. If that fails, the compiler tries to use the file name as-is. For a description of the available compiler
flags, please consult the Compiler flags section in the User Manual. Source file paths can be absolute, relative to the
current directory, or use library notation.

When this predicate is called from the top-level, relative source file paths are resolved using the current working
directory. When the calls are made from a source file, relative source file paths are resolved by default using the source
file directory (unless a relative_to flag is passed).

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails when
errors are found during compilation of a source file.

Warning: The compiler flags specified in the second argument only apply to the files listed in the first argument
and not to any files that those files may load or compile. Notably, if you are loading a loader file, the flags only
apply to the loader file itself and not to the files loaded by it.

Modes and number of proofs

logtalk load(@source_file_name, (@list (compiler_flag)) - zero_or_one
logtalk load(Clist (source_file_name), @list (compiler_flag)) - zero_or_one
Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error (source_file_name, File)

2.4. Built-in predicates 205

The Logtalk Handbook, Release v3.21.0

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error (library, Library)

File or an element File of the Files list, does not exist:
existence_error (file, File)

Flags is a variable or a list with an element which is a variable:
instantiation_error

Flags is neither a variable nor a proper list:
type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:
type_error (compiler flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:
permission_error (modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:
domain_error (flag_value, Flag+Value)

Examples

| 72— 1ogtalkiload(%ile_syétem, [por&ability(silent)]).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

logtalk_make/0

Description

logtalk_make

Reloads all Logtalk source files that have been modified since the time they are last loaded. Only source files loaded
using the logtalk_load/1-2 predicates are reloaded. Non-modified files will also be reloaded when there is a
change to the compilation mode (i.e. when the files were loaded without explicit debug or optimize flags and the
default values of these flags changed after loading; no check is made, however, for other implicit compiler flags that
may have changed since loading). When an included file is modified, this predicate reloads its main file (i.e. the file
that contains the include/I directive).

Depending on the backend Prolog compiler, the shortcut { x } may be used in alternative. Check the adapter files for
the availability of these shortcuts as they are not part of the language (and thus should only be used at the top-level
interpreter).

This predicate can be extended by the user by defining clauses for the logralk_make_target action/I multifile and
dynamic hook predicate using the argument al1l. The additional user defined actions are run after the default one.

206 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

logtalk_make - one

Errors

(none)

Examples

e l a files modified since st

relo L1l Ir'illes moaliriea since l1ast l1oad

| ?- logtalk_make.

See also:

logtalk_compile/l, logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/1, logtalk_make_target_action/I

logtalk_make/1

Description

logtalk _make (Target)

Runs a make target. Fails of the target is not valid.

Allows reloading all Logtalk source files that have been modified since last loaded when called with the target
all, deleting all intermediate files generated by the compilation of Logtalk source files when called with the tar-
get clean, checking for code issues when called with the target check, listing of circular dependencies between
pairs or trios of objects when called with the target circular, generating documentation when called with the target
documentation, and deleting the dynamic binding caches with the target caches.

There are also three variants of the all target: debug, normal, and optimal. These targets change the compila-
tion mode (by changing the default value of the debug and optimize flags) and reload all files affected.

When using the a1l target, only source files loaded using the 1ogtalk_load/1-2 predicates are reloaded. Non-
modified files will also be reloaded when there is a change to the compilation mode (i.e. when the files were loaded
without explicit debug or optimize flags and the default values of these flags changed after loading; no check is made,
however, for other implicit compiler flags that may have changed since loading). When an included file is modified,
this target reloads its main file (i.e. the file that contains the include/I directive).

When using the check or circular targets, be sure to compile your source files with the source_data flag turned
on for complete and detailed reports.

When using the check target, predicates for messages sent to objects that implement the forwarding built-in protocol
are not reported. While this usually avoids only false positives, it may also result in failure to report true missing
predicates in some cases.

When using the circular target, be prepared for a lengthy computation time for applications with a large combined
number of objects and message calls. Only mutual and triangular dependencies are checked due to the computational
cost.

The documentation target requires the doclet tool and a single doclet object to be loaded. See the doclet tool
for more details.

2.4. Built-in predicates 207

https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.21.0

Depending on the backend Prolog compiler, the following top-level shortcuts are usually defined:
e {x}-logtalk_make(all)
e {!}-logtalk_make (clean)
* {?}-logtalk_make (check)
e {@}-logtalk_make (circular)
e {#}-logtalk_make (documentation)
e {$}-logtalk_make (caches)
e {+d} - logtalk_make (debug)
* {+n} - logtalk_make (normal)
* {+o} - logtalk_make (optimal)

Check the adapter files for the availability of these shortcuts as they are not part of the language (and thus should only
be used at the top-level interpreter).

The target actions can be extended by defining clauses for the multifile and dynamic hook predicate
logtalk_make_target_action (Target) where Target is one of the targets listed above. The additional
user defined actions are run after the default ones.

Modes and number of proofs

logtalk make (+atom) - zero_or_one

Errors

(none)

Examples

cneckKk ror code 1ssues 1n tne l1oaded source riites:

?— logtalk_make (check) .

| ?- logtalk_make(clean).

See also:

logtalk_compile/l, logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/0, logtalk_make_target_action/I

logtalk_make_target_action/1

Description

logtalk_make_target_action (Target)

Multifile and dynamic hook predicate that allows defining user actions for the 1ogtalk_make/1 targets. The user
defined actions are run after the default ones using a failure driven loop.

208 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

logtalk_make_target_action (+atom) - zero_or_more

Errors

(none)

Examples

:— multifile (logtalk_make_target_action/1).
:— dynamic (logtalk_make_target_action/1).

logtalk_make_target_action (check) :-
dead_code_scanner::all.

See also:

logtalk_make/1, logtalk_make/0

logtalk_library path/2

Description

logtalk_ library path(Library, Path)

Dynamic and multifile user-defined predicate, allowing the declaration of aliases to library paths. Library aliases may
also be used on the second argument (using the notation alias(path)). Paths must always end with the path directory
separator character (/).

Relative paths (e.g. '../"' or './"') should only be used within the alias(path)) notation so that library paths can
always be expanded to absolute paths independently of the (usually unpredictable) current directory at the time the
logtalk_library_path/2 predicate is called.

When working with a relocatable application, the actual application installation directory can be retrieved by call-
ing the logtalk_load_context/2 predicate with the directory key and using the returned value to define the
logtalk_library_path/2 predicate. On a settings file, simply use an initialization/I directive to wrap the
call to the logtalk_load_context/2 predicate and the assert of the logtalk_library_path/2 fact.

This predicate may also be used to override the default scratch directory by defining the library alias
scratch_directory in a backend Prolog initialization file (assumed to be loaded prior to Logtalk loading). This
allows e.g. Logtalk to be installed in a read-only directory by setting this alias to the operating-system directory for
temporary files. It also allows several Logtalk instances to run concurrently without conflict by using a unique scratch
directory per instance (e.g. using a process ID or a UUID generator).

The 1ogtalk built-in object provides an expand_library path/2 predicate that can be used to expand library
aliases and files expressed using library notation.

2.4. Built-in predicates 209

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

logtalk_ library_path(?atom, —-atom) - zero_or_more
logtalk library_ path(?atom, -compound) - zero_or_more
Errors

(none)

Examples

| ?- logtalk_library_path(viewpoints, Path).

Path = examples ('viewpoints/")
yes

| ?- logtalk library path(Library, Path).

Library = home,
Path = 'SHOME/' ;

Library = logtalk_home,
Path = 'SLOGTALKHOME/' ;

Library = logtalk_user
Path = 'SLOGTALKUSER/' ;

Library = examples
Path = logtalk_user ('examples/') ;

Library = library
Path = logtalk_user('library/') ;

Library = viewpoints

Path = examples ('viewpoints/")
yes

See also:

logtalk_compile/l, logtalk_compile/2, logtalk_load/1, logtalk_load/2

logtalk_load_context/2

Description

logtalk load_context (Key, Value)

Provides access to the Logtalk compilation/loading context. The following keys are currently supported:
* entity_identifier -identifier of the entity being compiled if any
* entity_prefix -internal prefix for the entity compiled code

* entity_type - returns the value module when compiling a module as an object

210 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

* source - full path of the source file being compiled

e file - the actual file being compiled, different from source only when processing an include/ 1 directive
* basename - source file basename

* directory - source file directory

* stream - input stream being used to read source file terms

* target - the full path of the intermediate Prolog file

* flags - the list of the explicit flags used for the compilation of the source file

e term - the source file term being compiled

* term_position - the position of the term being compiled (StartLine-EndLine)

* variable_names - the variable names of the term being compiled ([Namel=Variablel, ...1)

The term_position key is only supported in backend Prolog compilers that provide access to the start and end
lines of a read term.

The logtalk_load_context/2 predicate can also be called initialization/I directives in a source file. A common
scenario is to use the directory key to define library aliases.

Currently, any variables in the values of the term and variable_names keys are not shared with, respectively, the
term and goal arguments of the term_expansion/2 and goal_expansion/2 methods.

Using the variable_names key requires calling the standard built-in predicate term_variables/2 onthe term
read and unifying the term variables with the variables in the names list. This, however, may rise portability issues with
those Prolog compilers that don’t return the variables in the same order for the term_variables/2 predicate and
the option variable_names/1 of the read_term/3 built-in predicate, which is used by the Logtalk compiler to
read source files.

Modes and number of proofs

logtalk_ load context (?atom, -nonvar) - zero_or_more
Errors

(none)

Examples

term_expansion (Term, ExpandedTerms) :-—

logtalk load context (entity_identifier, Entity),

:— initialization ((
logtalk_load_context (directory, Directory),
assertz (logtalk_library path (my_app, Directory))
)) .

See also:

goal_expansion/2, term_expansion/2

2.4. Built-in predicates 211

The Logtalk Handbook, Release v3.21.0

2.4.10 Flags

current_logtalk_flag/2

Description

current_logtalk flag(Flag, Value)

Enumerates, by backtracking, the current Logtalk flag values.

Modes and number of proofs

current_logtalk_flag(?atom, ?atom) - zero_or_more

Errors

Flag is neither a variable nor an atom:
type_error (atom, Flag)

Flag is an atom but an invalid flag:
domain_error (flag, Value)

Examples

ot o 11 rant 1ra] ~NE A amiir~ea A
yet he current value of he source_da

| ?- current_logtalk_flag(source_data,

See also:

create_logtalk_flag/3, set_logtalk_flag/2

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets Logtalk default, global, flag values. For local flag scope, use the corresponding set_logtalk_flag/2 directive. To
set a global flag value when compiling and loading a source file, wrap the calls to this built-in predicate with an

initialization/I directive.

Modes and number of proofs

set_logtalk_flag(+atom, +nonvar) - one

212

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

Flag is a variable:
instantiation_error
Value is a variable:
instantiation_error
Flag is neither a variable nor an atom:
type_error (atom, Flag)
Flag is an atom but an invalid flag:
domain_error (flag, Flag)
Value is not a valid value for flag Flag:
domain_error (flag_value, Flag + Value)
Flag is a read-only flag:
permission_error (modify, flag, Flag)

Examples

urn off the compiler unknown entities warnings:

| ?- set_logtalk flag(unknown_entities, silent).

See also:

create_logtalk_flag/3, current_logtalk_flag/2

create_logtalk_flag/3

Description

create_logtalk_flag(Flag, Value, Options)

Creates a new Logtalk flag and sets its default value. User-defined flags can be queried and set in the same way as
pre-defined flags by using, respectively, the current_logtalk_flag/2 and set_logtalk_flag/2 built-in predicates.

This predicate is based on the specification of the SWI-Prolog create_prolog_flag/3 built-in predicate and
supports the same options: access (Access), where Access can be either read_write (the default) or
read_only; keep (Keep), where Keep can be either false (the default) or true, for deciding if an exist-
ing definition of the flag should be kept or replaced by the new one; and type (Type) for specifying the type of
the flag, which can be boolean, atom, integer, float, or term (which only restricts the flag value to ground
terms). When the t ype /1 option is not specified, the type of the flag is inferred from its initial value.

Modes and number of proofs

create_logtalk flag(+atom, +ground, +list (ground)) - one

Errors

Flag is a variable:

2.4. Built-in predicates 213

The Logtalk Handbook, Release v3.21.0

instantiation_error
Value is not a ground term:
instantiation_error
Options is not a ground term:
instantiation_error
Flag is neither a variable nor an atom:
type_error (atom, Flag)
Options is neither a variable nor a list:
type_error (atom, Flag)
Value is not a valid value for flag Flag:
domain_error (flag_value, Flag + Value)
Flag is a system-defined flag:
permission_error (modify, flag, Flag)
An element Option of the list Options is not a valid option
domain_error(flag_option,Option)
The list Options contains a type(Type) option and Value is not a Type term
type_error(Type, Value)

Examples

create a new booloean flaog with defaultr valu cot +o falae-
L Ca e rew jojo} ean LiLtad wW1ltn acldu L =i e > €' L CoO LadaloC.

reate_logtalk_ flag(pretty_print_blobs, false, []).

| 2=

See also:

current_logtalk_flag/2, set_logtalk_flag/2

2.5 Built-in methods

2.5.1 Execution context

context/1

Description

context (Context)

Returns the execution context for a predicate clause using the term 1logtalk (Head, ExecutionContext) where
Head is the head of the clause containing the call. This private predicate is mainly used for providing a default error
context when type-checking predicate arguments. The Execut ionContext term should be regarded as an opaque
term, which can be decoded using the logtalk::execution_context/7 predicate. Calls to this predicate are inlined at
compilation time.

Modes and number of proofs

context (-—callable) - one

214 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0-execution-context-7

The Logtalk Handbook, Release v3.21.0

Errors

Context is not a variable:
type_error (var, Context)

Examples

foo (A, N) :—

+uUPe 2 e arariment

context (C
type: :check (atom, A, Context),
type: :check (integer, N, C

arguments are fine;

text),

See also:

parameter/2, self/1, sender/1, this/1

parameter/2

Description

parameter (Number, Term)

Used in parametric objects (and parametric categories), this private method provides runtime access to the parameter
values of the entity that contains the predicate clause whose body is being executed by using the argument number in
the entity identifier. This predicate is implemented as a unification between its second argument and the corresponding
implicit execution-context argument in the predicate clause making the call. This unification occurs at the clause head
when the second argument is not instantiated (the most common case). When the second argument is instantiated, the
unification must be delayed to runtime and thus occurs at the clause body.

Entity parameters can also be accessed using parameter variables, which use the syntax _VariableName_. The
compiler recognizes occurrences of these variables in entity clauses. Parameter variables allows us to abstract param-

eter positions thus simplifying code maintenance.

Modes and number of proofs

parameter (+integer, 7?term) - zero_or_one

Errors

Number is a variable:

instantiation_error

Number is neither a variable nor an integer value:

type_error (integer, Number)

Number is smaller than one or greater than the parametric entity identifier arity:

domain_error (out_of_range, Number)

Entity identifier is not a compound term:

2.5. Built-in methods

215

The Logtalk Handbook, Release v3.21.0

type_error (compound, Entity)

Examples

:— object (box (_Color,

color (Color) :—
parameter (1, Color).

heavy :-
parameter (2, Weight),

The same example using parameter variables:

:— object (box(_Color , _Weight)).

color(Color).

See also:

context/1, self/1, sender/l, this/I

self/1
Description
self (Self)

Returns the object that has received the message under processing. This private method is translated to a unification
between its argument and the corresponding implicit context argument in the predicate clause making the call. This
unification occurs at the clause head when the argument is not instantiated (the most common case).

Modes and number of proofs

self (?object_identifier) - zero_or_one

216 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

(none)

Examples

test :—

self (Self),
write ('executing a method in behalf of '),
writeq(Self), nl.

See also:

context/1, parameter/2, sender/1, this/l

sender/1

Description

sender (Sender)

Returns the object that has sent the message under processing. This private method is translated into a unification
between its argument and the corresponding implicit context argument in the predicate clause making the call. This
unification occurs at the clause head when the argument is not instantiated (the most common case).

Modes and number of proofs

sender (?object_identifier) - zero_or_one

Errors

(none)

Examples

test :—
sender (Sender),
write ('executing a method to answer a message sent by '),
writeq(Sender), nl.

See also:

context/1, parameter/2, self/1, this/I

2.5. Built-in methods 217

The Logtalk Handbook, Release v3.21.0

this/1
Description
this (This)

Unifies its argument with the identifier of the object for which the predicate clause whose body is being executed is
defined (or the object importing the category that contains the predicate clause). This private method is implemented as
a unification between its argument and the corresponding implicit execution-context argument in the predicate clause
making the call. This unification occurs at the clause head when the argument is not instantiated (the most common
case). This method is useful for avoiding hard-coding references to an object identifier or for retrieving all object
parameters with a single call when using parametric objects.

Modes and number of proofs

this (?object_identifier) - zero_or_one

Errors

(none)

Examples

this (This),
write('Using a predicate clause contained in '),
writeq(This), nl.

See also:

context/1, parameter/2, self/1, sender/l

2.5.2 Reflection

current_op/3

Description

current_op(Priority, Specifier, Operator)

Enumerates, by backtracking, the visible operators declared for an object. Operators not declared using a scope
directive are not enumerated.

218 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

current_op (?operator_priority, ?operator_specifier, ?atom) - zero_or_more

Errors

Priority is neither a variable nor an integer:
type_error (integer, Priority)
Priority is an integer but not a valid operator priority:
domain_error (operator_priority, Priority)
Specifier is neither a variable nor an atom:
type_error (atom, Specifier)
Specifier is an atom but not a valid operator specifier:
domain_error (operator_specifier, Specifier)
Operator is neither a variable nor an atom:
type_error (atom, Operator)

Examples

To enumerate, by backtracking, the local operators or the operators visible in #/is:
current_op (Priority, Specifier, Operator)

To enumerate, by backtracking, the public and protected operators visible in self:
::current_op (Priority, Specifier, Operator)

To enumerate, by backtracking, the public operators visible for an explicit object:
Object::current_op (Priority, Specifier, Operator)

See also:

current_predicate/l, predicate_property/2, op/3

current_predicate/1

Description

current_predicate (Predicate)

Enumerates, by backtracking, visible user object predicates. Predicates not declared using a scope directive are not
enumerated.

When Predicate is ground at compile time, this predicate also succeeds for any predicates listed in uses/2 and
use_module/2 directives.

When Predicate is bound at compile time to a : /2 term, this predicate enumerates module predicates (assuming
that the backend Prolog compiler supports modules).

2.5. Built-in methods 219

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

current_predicate (?predicate_indicator) - zero_or_more

Errors

Predicate is neither a variable nor a valid predicate indicator:
type_error (predicate_indicator, Predicate)

Predicate is a Name/Arity term but Functor is neither a variable nor an atom:
type_error (atom, Name)

Predicate is a Name/Arity term but Arity is neither a variable nor an integer:
type_error (integer, Arity)

Predicate is a Name/Arity term but Arity is a negative integer:

domain_error (not_less_than_zero, Arity)

Examples

To enumerate, by backtracking, the locally visible user predicates or the user predicates visible in 4is:
current_predicate (Predicate)

To enumerate, by backtracking, the public and protected user predicates visible in self:
::current_predicate (Predicate)

To enumerate, by backtracking, the public user predicates visible for an explicit object:
Object::current_predicate (Predicate)

See also:

current_op/3, predicate_property/2, uses/2, use_module/2

predicate_property/2

Description

predicate_property (Predicate, Property)

Enumerates, by backtracking, the properties of a visible object predicate. Properties for predicates not declared using
a scope directive are not enumerated. The valid predicate properties are listed in the language gramar section on
predicate properties.

When Predicate is ground at compile time and its predicate indicator is listed in a uses/2 or use_module/2 directive,
properties are enumerated for the referenced object or module predicate.

When Predicate is bound at compile time to a : /2 term, this predicate enumerates properties for module predicates
(assuming that the backend Prolog compiler supports modules).

220 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

predicate_property(+callable, ?predicate_property) - zero_or_more

Errors

Predicate is a variable:
instantiation_error
Predicate is neither a variable nor a callable term:
type_error (callable, Predicate)
Property is neither a variable nor a valid predicate property:

domain_error (predicate_property, Property)

Examples

To enumerate, by backtracking, the properties of a locally visible user predicate or a user predicate visible in this:
predicate_property (foo(_), Property)

To enumerate, by backtracking, the properties of a public or protected predicate visible in self:
::predicate_property (foo(_), Property)

To enumerate, by backtracking, the properties of a public predicate visible in an explicit object:
Object::predicate_property(foo(_), Property)

See also:

current_op/3, current_predicate/l, uses/2, use_module/2

2.5.3 Database
abolish/1

Description

abolish (Predicate)

Abolishes a runtime declared object dynamic predicate or an object local dynamic predicate. Only predicates that are
dynamically declared at runtime (using a call to the asserta/1 or assertz/1 built-in methods) can be abolished.

When the predicate indicator is declared in a uses/2 or use_module/2 directive, the predicate is abolished in the refer-
enced object or module.

Modes and number of proofs

abolish (+predicate_indicator) - one

2.5. Built-in methods 221

The Logtalk Handbook, Release v3.21.0

Errors

Predicate is a variable:

instantiation_error
Functor is a variable:

instantiation_error
Arity is a variable:

instantiation_error
Predicate is neither a variable nor a valid predicate indicator:

type_error (predicate_indicator, Predicate)
Functor is neither a variable nor an atom:

type_error (atom, Functor)
Arity is neither a variable nor an integer:

type_error (integer, Arity)
Predicate is statically declared:

permission_error (modify, predicate_declaration, Name/Arity)
Predicate is a private predicate:

permission_error (modify, private_predicate, Name/Arity)
Predicate is a protected predicate:

permission_error (modify, protected_predicate, Name/Arity)
Predicate is a static predicate:

permission_error (modify, static_predicate, Name/Arity)
Predicate is not declared for the object receiving the message:

existence_error (predicate_declaration, Name/Arity)

Examples

To abolish a local dynamic predicate or a dynamic predicate in z/is:
abolish (Predicate)

To abolish a public or protected dynamic predicate in self:
::abolish (Predicate)

To abolish a public dynamic predicate in an explicit object:
Object::abolish (Predicate)

See also:

asserta/l, assertz/1, clause/2, retract/1, retractall/l dynamic/0, dynamic/l, uses/2, use_module/2

asserta/1

Description

asserta (Head)
asserta ((Head

:—Body))

Asserts a clause as the first one for an object dynamic predicate. If the predicate is not previously declared (using a
scope directive), then a dynamic predicate declaration is added to the object (assuming that we are asserting locally or

222 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

that the dynamic_declarations compiler flag was set to al1low when the object was created or compiled).

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is asserted in the
referenced object or module.

This method may be used to assert clauses for predicates that are not declared dynamic for dynamic objects provided
that the predicates are declared in rhis. This allows easy initialization of dynamically created objects when writing
constructors.

Modes and number of proofs

asserta(+clause) - one

Errors

Head is a variable:
instantiation_error
Head is a neither a variable nor a callable term:
type_error(callable, Head)
Body cannot be converted to a goal:
type_error(callable, Body)
The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error (modify, private_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error (modify, protected_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error (modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was created or
compiled with support for dynamic declaration of predicates turned off:

permission_error (create, predicate_declaration, Name/Arity)

Examples

To assert a clause as the first one for a local dynamic predicate or a dynamic predicate in zhis:
asserta (Clause)

To assert a clause as the first one for any public or protected dynamic predicate in self:
::asserta(Clause)

To assert a clause as the first one for any public dynamic predicate in an explicit object:

Object::asserta(Clause)

See also:

abolish/1, assertz/1, clause/2, retract/1, retractall/l dynamic/0, dynamic/l, uses/2, use_module/2

assertz/1

2.5. Built-in methods 223

The Logtalk Handbook, Release v3.21.0

Description

assertz (Head)
assertz ((Head:

Asserts a clause as the last one for a dynamic predicate. If the predicate is not previously declared (using a scope
directive), then a dynamic predicate declaration is added to the object (assuming that we are asserting locally or that
the dynamic_declarations compiler flag was set to al1ow when the object was created or compiled).

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is asserted in the
referenced object or module.

This method may be used to assert clauses for predicates that are not declared dynamic for dynamic objects provided
that the predicates are declared in rhis. This allows easy initialization of dynamically created objects when writing
constructors.

Modes and number of proofs

assertz (+clause) - one

Errors

Head is a variable:
instantiation_error
Head is a neither a variable nor a callable term:
type_error (callable, Head)
Body cannot be converted to a goal:
type_error(callable, Body)
The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error (modify, private_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error (modify, protected_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error (modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was
created/compiled with support for dynamic declaration of predicates turned off:

permission_error (create, predicate_declaration, Name/Arity)

Examples

To assert a clause as the last one for a local dynamic predicate or a dynamic predicate in this:
assertz (Clause)

To assert a clause as the last one for any public or protected dynamic predicate in self:
::assertz (Clause)

To assert a clause as the last one for any public dynamic predicate in an explicit object:
Object::assertz (Clause)

224 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

See also:

abolish/1, asserta/l, clause/2, retract/l, retractall/l dynamic/0, dynamic/l, uses/2, use_module/2

clause/2

Description

clause (Head, Body)

Enumerates, by backtracking, the clauses of a dynamic predicate.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the predicate enumerates the
clauses in the referenced object or module.

This method may be used to enumerate clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this.

Modes and number of proofs

clause (+callable, ?body) - zero_or_more

Errors

Head is a variable:
instantiation_error
Head is a neither a variable nor a callable term:
type_error (callable, Head)
Body is a neither a variable nor a callable term:
type_error(callable, Body)
The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error (access, private_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error (access, protected_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error (access, static_predicate, Name/Arity)
Head is not a declared predicate:
existence_error (predicate_declaration, Name/Arity)

Examples

To retrieve a matching clause of a local dynamic predicate or a dynamic predicate in 7his:
clause (Head, Body)

To retrieve a matching clause of a public or protected dynamic predicate in self:
::clause (Head, Body)

To retrieve a matching clause of a public dynamic predicate in an explicit object:
Object::clause (Head, Body)

2.5. Built-in methods 225

The Logtalk Handbook, Release v3.21.0

See also:

abolish/1, asserta/l, assertz/1, retract/1, retractall/l dynamic/0, dynamic/l, uses/2, use_module/2

retract/1

Description

retract (He
retract ((Head:

—-Body))

Retracts a clause for an object dynamic predicate. On backtracking, the predicate retracts the next matching clause.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is retracted in the
referenced object or module.

This method may be used to retract clauses for predicates that are not declared dynamic for dynamic objects provided
that the predicates are declared in this.

Modes and number of proofs

retract (+clause) - zero_or_more

Errors

Head is a variable:
instantiation_error
Head is neither a variable nor a callable term:
type_error(callable, Head)
The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error (modify, private_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error (modify, protected_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error (modify, static_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is not declared:

existence_error (predicate_declaration, Name/Arity)

Examples

To retract a matching clause of a dynamic predicate in this:
retract (Clause)

To retract a matching clause of a public or protected dynamic predicate in self:
::retract (Clause)

To retract a matching clause of a public dynamic predicate in an explicit object:
Object::retract (Clause)

226 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

See also:

abolish/1, asserta/l, assertz/1, clause/2, retractall/l, dynamic/0, dynamic/l, uses/2, use_module/2

retractall/1

Description

retractall (Head)

Retracts all clauses with a matching head for an object dynamic predicate.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clauses are retracted in
the referenced object or module.

This method may be used to retract clauses for predicates that are not declared dynamic for dynamic objects provided
that the predicates are declared in this.

Modes and number of proofs

retractall (+callable) - one

Errors

Head is a variable:
instantiation_error
Head is neither a variable nor a callable term:
type_error (callable, Head)
The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error (modify, private_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error (modify, protected_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error (modify, static_predicate, Name/Arity)
The predicate indicator of Head, Name/Arity, is not declared:

existence_error (predicate_declaration, Name/Arity)

Examples

To retract all clauses with a matching head of a dynamic predicate in this:
retractall (Head)

To retract all clauses with a matching head of a public or protected dynamic predicate in self:
::retractall (Head)

To retract all clauses with a matching head of a public dynamic predicate in an explicit object:
Object::retractall (Head)

See also:

2.5. Built-in methods 227

The Logtalk Handbook, Release v3.21.0

abolish/1, asserta/l, assertz/1, clause/2, retract/1, dynamic/0, dynamic/l, uses/2, use_module/2

2.5.4 Meta-calls

call/1-N

Description

call (Goal)
call (Closure, Argl, ...)

Calls a goal, which might be constructed by appending additional arguments to a closure. The upper limit for N
depends on the upper limit for the arity of a compound term of the backend Prolog compiler. This built-in meta-
predicate is declared as a private method and thus cannot be used as a message to an object. The Closure argument
can also be a lambda expression or a Logtalk control construct. When using a backend Prolog compiler supporting a
module system, calls in the format call (Module:Closure, Argl, ...) may also be used.

This meta-predicate is opaque to cuts in its arguments.

Modes and number of proofs

call (+callable) - zero_or_more

call (+callable, ?term) - zero_or_more

call (+callable, ?term, ?term) - zero_or_more
Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error (callable, Closure)

Examples

Call a goal, constructed by appending additional arguments to a closure, in the context of the object or category
containing the call:

call (Closure, Argl, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to self:
call(::Closure, Argl, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to an explicit object:
call (Object::Closure, Argl, Arg2, ...)

228 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

See also:

ignore/l, once/l1,\+/1

ignore/1

Description

ignore (Goal)

This predicate succeeds whether its argument succeeds or fails and it is not re-executable. This built-in meta-predicate

is declared as a private method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Modes and number of proofs

ignore (+callable) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Call a goal and succeeding even if it fails:
ignore (Goal)

To send a message succeeding even if it fails to self:
ignore (::Goal)

To send a message succeeding even if it fails to an explicit object:
ignore (Object: :Goal)

See also:

call/l-N, once/l1,\+/1

once/1
Description
once (Goal)

2.5. Built-in methods

229

The Logtalk Handbook, Release v3.21.0

This predicate behaves as call (Goal) but it is not re-executable. This built-in meta-predicate is declared as a
private method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Modes and number of proofs

once (+callable) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Call a goal deterministically in the context of the object or category containing the call:
once (Goal)

To send a goal as a non-backtracable message to self:
once (::Goal)

To send a goal as a non-backtracable message to an explicit object:
once (Object: :Goal)

See also:

call/I-N, ignore/1,\+/1

\+/1
Description
\+ Goal

Not-provable meta-predicate. True iff call (Goal) is false. This built-in meta-predicate is declared as a private
method and thus cannot be used as a message to an object.

Modes and number of proofs

\+ +callable - zero_or_one

230 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error (callable, Goal)

Examples

Not-provable goal in the context of the object or category containing the call:
\+ Goal

Not-provable goal sent as a message to self:
\+ ::Goal

Not-provable goal sent as a message to an explicit object:
\+ Object::Goal

See also:

call/I-N, ignore/l, once/l

2.5.5 Error handling

catch/3
Description
catch (Goal, Catcher, Recovery)

Catches exceptions thrown by a goal. See the ISO Prolog standard definition. This built-in meta-predicate is declared
as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

catch(?callable, ?term, ?term) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

2.5. Built-in methods 231

The Logtalk Handbook, Release v3.21.0

Examples

(none)
See also:

throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permission_error/3, eval-
uation_error/1, representation_error/l resource_error/1, syntax_error/1, system_error/0

throw/1

Description

throw (Exception)

Throws an exception. This built-in predicate is declared as a private method and thus cannot be used as a message to
an object.

Modes and number of proofs

throw (+nonvar) - error

Errors

Exception is a variable:
instantiation_error

Exception does not unify with the second argument of any call of carch/3:
system_error

Examples

(none)
See also:

catch/3, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permission_error/3, evalu-
ation_error/1, representation_error/I resource_error/1, syntax_error/1, system_error/0

instantiation_error/0

Description

instantiation_error

Throws an instantiation error. This built-in predicate is declared as a private method and thus cannot be used as a
message to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head
of the predicate clause making the call:

232 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

.
context (Context),
throw (error (instantiation_error, logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

instantiation_error - error

Errors

When called:

instantiation_error

Examples

.7
var (Handler),
instantiation_error.

See also:

catch/3, throw/l, context/l, type_error/2, domain_error/2, existence_error/2, permission_error/3, representa-
tion_error/1, evaluation_error/1, resource_error/1, syntax_error/l, system_error/0

type_error/2

Description

type_error (Type, Culprit)

Throws a type error. This built-in predicate is declared as a private method and thus cannot be used as a message to an
object. Calling this predicate is equivalent to the following sequence of calls where Head is the head of the predicate
clause making the call:

context (Context),
throw (error (type_error (Type,Culprit), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

type_error (+nonvar, tterm) - error

2.5. Built-in methods 233

The Logtalk Handbook, Release v3.21.0

Errors

When called:
type_error (Type, Culprit)

Examples

.7
\+ atom (Name),
type_error (atom, Name) .

See also:

catch/3, throw/1, context/1, instantiation_error/0, domain_error/2, existence_error/2, permission_error/3, represen-
tation_error/1 evaluation_error/1, resource_error/1, syntax_error/1, system_error/0,

domain_error/2

Description

domain_error (Domain, Culprit)

Throws a domain error. This built-in predicate is declared as a private method and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head of the
predicate clause making the call:

.
context (Context),
throw (error (domain_error (Domain,Culprit), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

domain_error (+atom, +nonvar) - error

Errors

When called:

domain_error (Domain, Culprit)

Examples

.
atom(Color),
\+ color(Color),
domain_error (color, Color).

234 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, existence_error/2, permission_error/3, representa-
tion_error/1, evaluation_error/1, resource_error/1, syntax_error/l, system_error/0

existence_error/2

Description

existence_error (Thing, Culprit)

Throws an existence error. This built-in predicate is declared as a private method and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head of the
predicate clause making the call:

.7
context (Context),
throw (error (existence_error (Thing,Culprit), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

existence_error (+tnonvar) — error

Errors

When called:

existence_error (Thing, Culprit)

Examples

.7
\+ current_object (payroll),
existence_error (object, payroll).

See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, evaluation_error/l, permis-
sion_error/3, representation_error/1, resource_error/1, syntax_error/l, system_error/0

permission_error/3

Description

permission_error (Operation, Permission, Culprit)

2.5. Built-in methods 235

The Logtalk Handbook, Release v3.21.0

Throws an evaluation error. This built-in predicate is declared as a private method and thus cannot be used as a
message to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head
of the predicate clause making the call:

-7
context (Context),
throw (error (permission_error (Operation,Permission,Culprit), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

permission_error (+nonvar) - error

Errors

When called:

permission_error (Operation,Permission, Culprit)

Examples

.7
\+ writable(File),
permission_error (modify, file, File).

See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, representa-
tion_error/1, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

representation_error/1

Description

representation_error (Flag)

Throws a representation error. This built-in predicate is declared as a private method and thus cannot be used as a
message to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head
of the predicate clause making the call:

.7
context (Context),
throw (error (representation_error (Flag), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

236 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

representation_error (+atom) - error

Errors

When called:

representation_error (Flaqg)

Examples

L4
Code > 127,

representation_error (character_code) .

See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, evaluation_error/1, resource_error/l, syntax_error/1, system_error/0

evaluation_error/1

Description

evaluation_error (Exception)

Throws an evaluation error. This built-in predicate is declared as a private method and thus cannot be used as a
message to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head
of the predicate clause making the call:

.
context (Context),
throw (error (evaluation_error (Exception), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

evaluation error (+nonvar) - error

Errors

When called:

evaluation_error (Exception)

2.5. Built-in methods 237

The Logtalk Handbook, Release v3.21.0

Examples

I
Divisor =:= 0,
evaluation_error (zero_divisor) .

See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, resource_error/1, syntax_error/1, system_error/0

resource_error/1

Description

resource_error (Resource)

Throws a resource error. This built-in predicate is declared as a private method and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head of the
predicate clause making the call:

.7
context (Context),
throw (error (resource_error (Resource), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

resource_error (+nonvar) - error

Errors

When called:

resource_error (Resource)

Examples

cey
empty (Tank),
resource_error (gas) .

See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, instantiation_error/0, syntax_error/1, system_error/0

238 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

syntax_error/1

Description

Throws a syntax error. This built-in predicate is declared as a private method and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head of the
predicate clause making the call:

-7
context (Context),
throw (error (syntax_error (Description), logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

syntax error (+nonvar) - error

Errors

When called:

syntax_error (Description)

Examples

(none)
See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, instantiation_error/0, system_error/0 resource_error/l

system_error/0

Description

system error

Throws a system error. This built-in predicate is declared as a private method and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls where Head is the head of the
predicate clause making the call:

context (Context),
throw (error (system_error, logtalk (Head,Context))).

This allows the user to generate errors in the same format used by the runtime.

2.5. Built-in methods 239

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

system_error - error

Errors

When called:

system_error

Examples

(none)
See also:

catch/3, throw/l, context/l, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1 evaluation_error/1, resource_error/1, syntax_error/I,

2.5.6 All solutions

bagof/3

Description

bagof (Template, Goal, List)

Collects a bag of solutions for the goal for each set of instantiations of the free variables in the goal. The order of the
elements in the bag follows the order of the goal solutions. The free variables in the goal are the variables that occur
in the goal but not in the template. Free variables can be ignored, however, by using the " /2 existential qualifier. For
example, if T is term containing all the free variables that we want to ignore, we can write T"Goal. Note that the
term T can be written as V1°V2~

When there are free variables, this method is re-executable on backtracking. This method fails when there are no
solutions, never returning an empty list.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

bagof (Gterm, +callable, -list) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:

240 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

existence_error (procedure, Predicate)

Examples

To find a bag of solutions in the context of the object or category containing the call:
bagof (Template, Goal, List)

To find a bag of solutions of sending a message to self:
bagof (Template, ::Message, List)

To find a bag of solutions of sending a message to an explicit object:
bagof (Template, Object::Message, List)

See also:

findall/3, findall/4, forall/2, setof/3

findall/3

Description

findall (Template, Goal, List)

Collects a list of solutions for the goal. The order of the elements in the list follows the order of the goal solutions. It
succeeds returning an empty list when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

findall (?term, +callable, ?list) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error (callable, Goal)

Goal is a call to a non-existing predicate:
existence_error (procedure, Predicate)

Examples

To find all solutions in the context of the object or category containing the call:
findall (Template, Goal, List)

To find all solutions of sending a message to self:
findall (Template, ::Message, List)

2.5. Built-in methods 241

The Logtalk Handbook, Release v3.21.0

To find all solutions of sending a message to an explicit object:
findall (Template, Object::Message, List)

See also:

bagof/3, findall/4, forall/2, setof/3

findall/4

Description

findall (Template, Goal, List, Tail)

Variant of the findall/3 method that allows passing the tail of the results list. It succeeds returning the tail argument

when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

findall (?term, +callable, ?list, +1list) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:

existence_error (procedure, Predicate)

Examples

To find all solutions in the context of the object or category containing the call:
findall (Template, Goal, List, Tail)

To find all solutions of sending a message to self:
findall (Template, ::Message, List, Tail)

To find all solutions of sending a message to an explicit object:
findall (Template, Object::Message, List, Tail)

See also:

bagof/3, findall/3, forall/2, setof/3

242 Chapter 2.

Reference Manual

The Logtalk Handbook, Release v3.21.0

forall/2

Description

forall (Generator, Test)

For all solutions of Generator, Test is true. This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

Modes and number of proofs

forall (+tcallable, +callable) - zero_or_one

Errors

Either Generator or Test is a variable:
instantiation_error

Generator is neither a variable nor a callable term:
type_error (callable, Generator)

Test is neither a variable nor a callable term:
type_error(callable, Test)

Examples

To call both goals in the context of the object or category containing the call:
forall (Generator, Test)

To send both goals as messages to self:
forall (::Generator, ::Test)

To send both goals as messages to explicit objects:
forall (Objectl: :Generator, Object2::Test)

See also:

bagof/3, findall/3, findall/4, setof/3

setof/3

Description

setof (Template, Goal, List)

Collects a set of solutions for the goal for each set of instantiations of the free variables in the goal. The solutions are
sorted using standard term order. The free variables in the goal are the variables that occur in the goal but not in the
template. Free variables can be ignored, however, by using the ~ /2 existential qualifier. For example, if T is term
containing all the free variables that we want to ignore, we can write T~Goal. Note that the term T can be written as
Vitvah....

2.5. Built-in methods 243

The Logtalk Handbook, Release v3.21.0

When there are free variables, this method is re-executable on backtracking. This method fails when there are no
solutions, never returning an empty list.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

setof (lterm, +callable, -list) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:

existence_error (procedure, Predicate)

Examples

To find a set of solutions in the context of the object or category containing the call:
setof (Template, Goal, List)

To find a set of solutions of sending a message to self:
setof (Template, ::Message, List)

To find a set of solutions of sending a message to an explicit object:
setof (Template, Object::Message, List)

See also:

bagof/3, findall/3, findall/4, forall/2

2.5.7 Event handling

before/3

Description

before (Object, Message, Sender)

User-defined method for handling before events. This method is declared in the monitoring built-in protocol as a
public predicate and automatically called by the runtime for messages sent using the ::/2 control construct from within
objects compiled with the events flag set to allow.

Note that you can make this predicate scope protected or private by using, respectively, protected or private implemen-
tation of the monitoring protocol.

244 Chapter 2. Reference Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

before (?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

Examples

:— object (...,
implements (monitoring),

L)

~ite a log

before (Object, M
writeq (Object)
write(' from '

Sender)

) 14
, write('::'), writeq(Message),
), writeq(Sender), nl.

See also:

after/3, abolish_events/5, current_event/5, define_events/5

after/3

Description

after (Object, Message, Sender)

User-defined method for handling after events. This method is declared in the monitoring built-in protocol as a public
predicate and automatically called by the runtime for messages sent using the ::/2 control construct from within objects

compiled with the events flag set to allow.

Note that you can make this predicate scope protected or private by using, respectively, protected or private implemen-

tation of the monitoring protocol.

Modes and number of proofs

after (?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

2.5. Built-in methods

245

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.21.0

Examples

:— object (...,
implements (monitoring),

).
¢ write a log me
after (Object,
writeq(Object
write (' from

::'), writeq(Mess
, writeq(Sender), nl.

-~

See also:

before/3, abolish_events/5, current_event/S, define_events/5
2.5.8 Message forwarding

forward/1

Description

forward (Message)

User-defined method for forwarding unknown messages sent to an object (using the ::/2 control construct), automat-
ically called by the runtime when defined. This method is declared in the forwarding built-in protocol as a public
predicate. Note that you can make its scope protected or private by using, respectively, protected or private implemen-
tation of the forwarding protocol.

Modes and number of proofs

forward (+callable) - zero_or_more

Errors

(none)

Examples

:— object (proxy,
implements (forwarding),

L)

See also:

(1

246 Chapter 2. Reference Manual

https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.21.0

2.5.9 Definite clause grammar rules

call/1-N

Description

This non-terminal takes a closure and is processed by appending the input list of tokens and the list of remaining
tokens to the arguments of the closure. This built-in non-terminal is interpreted as a private non-terminal and thus
cannot be used as a message to an object. When using a backend Prolog compiler supporting a module system, calls
in the format call (Module:Closure) may also be used. By using as argument a lambda expression, this built-in
non-terminal can provide controlled access to the input list of tokens and to the list of the remaining tokens processed
by the grammar rule containing the call.

Modes and number of proofs

call (+callable) - zero_or_more

call (+callable, ?term) - zero_or_more

call (+callable, ?term, ?term) — zero_or_more
Errors

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error (callable, Closure)

Examples

Calls a goal, constructed by appending the tokens difference list to the closure, in in the context of the object or
category containing the call:

call (Closure)

To send a goal, constructed by appending the tokens difference list to the closure, as a message to self:
call(::Closure)

To send a goal, constructed by appending the tokens difference list to the closure, as a message to an explicit object:
call (Object::Closure)

See also:

eos//0, phrase//1, phrase/2, phrase/3

2.5. Built-in methods 247

The Logtalk Handbook, Release v3.21.0

eos//0

Description

e€0s

This non-terminal matches the end-of-input. It is implemented by checking that the implicit difference list unifies with

[1-11.

Modes and number of proofs

eos — zero_or_one

Errors

(none)

Examples

abc -——> a, b, c, eos.

See also:

call//1-N, phrase//1, phrase/2, phrase/3

phrase//1

Description

phrase (NonTerminal)

This non-terminal takes a non-terminal or a grammar rule body and parses it using the implicit difference list of tokens.
A common use is to wrap what otherwise would be a naked variable in a grammar rule body.

Modes and number of proofs

phrase (+callable) - zero_or_more

Errors

NonTerminal is a variable:
instantiation_error

NonTerminal is neither a variable nor a callable term:
type_error (callable, NonTerminal)

248

Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Examples

(none)
See also:

call//1-N, phrase/2, phrase/3

phrase/2

Description

phrase (GrammarRuleBody, Input)

phrase (::GrammarRule 1y, Input)
phrase (Object: :GrammarRuleBody, Input)

True when the GrammarRuleBody grammar rule body can be applied to the Input list of tokens. In the most
common case, GrammarRuleBody is a non-terminal defined by a grammar rule. This built-in method is declared
private and thus cannot be used as a message to an object. When using a backend Prolog compiler supporting a module
system, calls in the format phrase (Module:GrammarRuleBody, Input) may also be used.

This method is opaque to cuts in the first argument. When the first argument is sufficiently instantiated at compile
time, the method call is compiled in order to eliminate the implicit overheads of converting the grammar rule body
into a goal and meta-calling it. For performance reasons, the second argument is only type-checked at compile time.

Modes and number of proofs

phrase (+callable, ?list) - zero_or_more

Errors

NonTerminal is a variable:
instantiation_error
NonTerminal is neither a variable nor a callable term:

type_error (callable, NonTerminal)

Examples

To parse a list of tokens using a local non-terminal:
phrase (NonTerminal, Input)

To parse a list of tokens using a non-terminal within the scope of self:
phrase (::NonTerminal, Input)

To parse a list of tokens using a public non-terminal of an explicit object:
phrase (Object: :NonTerminal, Input)

See also:

call//1-N, phrase//1, phrase/3

2.5. Built-in methods 249

The Logtalk Handbook, Release v3.21.0

phrase/3

Description

phrase (GrammarRuleBody, Input, Rest)

phrase (::GrammarRuleBody, Input, Rest)
phrase (Object: :GrammarRuleBody, Input, Rest)

True when the GrammarRuleBody grammar rule body can be applied to the Input -Rest difference list of tokens.
In the most common case, GrammarRuleBody is a non-terminal defined by a grammar rule. This built-in method is
declared private and thus cannot be used as a message to an object. When using a backend Prolog compiler supporting
a module system, calls in the format phrase (Module:GrammarRuleBody, Input, Rest) may also be
used.

This method is opaque to cuts in the first argument. When the first argument is sufficiently instantiated at compile
time, the method call is compiled in order to eliminate the implicit overheads of converting the grammar rule body
into a goal and meta-calling it. For performance reasons, the second and third arguments are only type-checked at
compile time.

Modes and number of proofs

phrase (+callable, 7?list, ?list) - zero_or_more

Errors

NonTerminal is a variable:
instantiation_error
NonTerminal is neither a variable nor a callable term:

type_error (callable, NonTerminal)

Examples

To parse a list of tokens using a local non-terminal:
phrase (NonTerminal, Input, Rest)

To parse a list of tokens using a non-terminal within the scope of self:
phrase (::NonTerminal, Input, Rest)

To parse a list of tokens using a public non-terminal of an explicit object:
phrase (Object::NonTerminal, Input, Rest)

See also:

call//1-N, phrase/2, phrase/3

2.5.10 Term and goal expansion

expand_term/2

250 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.21.0

Description

expand_term(Term, Expansion)

Expands a term. The most common use is to expand a grammar rule into a clause. Users may override the default
Logtalk grammar rule translator by defining clauses for the ferm_expansion/2 hook predicate.

The expansion works as follows: if the first argument is a variable, then it is unified with the second argument; if the
first argument is not a variable and there are local or inherited clauses for the term_expansion/2 hook predicate
within scope, then this predicate is called to provide an expansion that is then unified with the second argument; if
the term_expansion/2 predicate is not used and the first argument is a compound term with functor ——>/2 then
the default Logtalk grammar rule translator is used, with the resulting clause being unified with the second argument;
when the translator is not used, the two arguments are unified. The expand_term/2 predicate may return a single
term or a list of terms.

This built-in method may be used to expand a grammar rule into a clause for use with the built-in database methods.

Automatic term expansion is only performed at compile time (to expand terms read from a source file) when using a
hook object. This predicate can be used by the user to manually perform term expansion at runtime (for example, to
convert a grammar rule into a clause).

Modes and number of proofs

expand_term(?term, ?term) - one

Errors

(none)

Examples

(none)
See also:
expand_goal/2, goal_expansion/2, term_expansion/2

term_expansion/2

Description

term_expansion (Term, Expansion)

Defines an expansion for a term. This predicate, when defined and within scope, is automatically called by the
expand_term/2 method. When that is not the case, the expand_term/2 method only uses the default expansions.
Use of this predicate by the expand_term/2 method may be restricted by changing its default public scope.

The term_expansion/2 predicate may return a list of terms. Returning an empty list effectively suppresses the
term.

Term expansion may be also be applied when compiling source files by defining the object providing access to the
term_expansion/2 clauses as a hook object. Clauses for the term_expansion/2 predicate defined within an

2.5. Built-in methods 251

The Logtalk Handbook, Release v3.21.0

object or a category are never used in the compilation of the object or the category itself. Moreover, in this context,
terms wrapped using the {/}//I compiler bypass control construct are not expanded and any expanded term wrapped in
this control construct will not be further expanded.

Objects and categories implementing this predicate should declare that they implement the expanding protocol if no
ancestor already declares it. This protocol implementation relation can be declared as either protected or private to
restrict the scope of this predicate.

Modes and number of proofs

term_expansion (+nonvar, -nonvar) - zero_or_one

term_expansion (+nonvar, -list (nonvar)) - zero_or_one

Errors

(none)

Examples

term_expansion((:- license(default)), (:- license(gplv3))).

term expansion (data(Millimeters), data(Meters)) :— Meters is Millimeters / 1000
See also:

expand_goal/2, expand_term/2, goal_expansion/2, logtalk_load_context/2

expand_goal/2

Description

expand_goal (Goal, ExpandedGoal)

Expands a goal. The expansion works as follows: if the first argument is a variable, then it is unified with the second
argument; if the first argument is not a variable and there are local or inherited clauses for the goal_expansion/
2 hook predicate within scope, then this predicate is recursively called until a fixed-point is reached to provide an
expansion that is then unified with the second argument; if the goal_expansion/2 predicate is not within scope,
the two arguments are unified.

Automatic goal expansion is only performed at compile time (to expand the body of clauses and meta-directives read
from a source file) when using hook objects. This predicate can be used by the user to manually perform goal expansion
at runtime (for example, before asserting a clause).

Modes and number of proofs

expand_goal (?term, ?term) - one

252 Chapter 2. Reference Manual

https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.21.0

Errors

(none)

Examples

(none)
See also:
expand_term/2, goal_expansion/2, term_expansion/2

goal_expansion/2

Description

goal_expansion (Goal, ExpandedGoal)

Defines an expansion for a goal. The first argument is the goal to be expanded. The expanded goal is returned in the
second argument. This predicate is called recursively on the expanded goal until a fixed point is reached. Thus, care
must be taken to avoid compilation loops. This predicate, when defined and within scope, is automatically called by
the expand_goal/2 method. Use of this predicate by the expand_goal/2 method may be restricted by changing its
default public scope.

Goal expansion may be also be applied when compiling source files by defining the object providing access to the
goal_expansion/2 clauses as a hook object. Clauses for the goal_expansion/2 predicate defined within an
object or a category are never used in the compilation of the object or the category itself. Moreover, in this context,
goals wrapped using the {/// compiler bypass control construct are not expanded and any expanded goal wrapped in
this control construct will not be further expanded.

Objects and categories implementing this predicate should declare that they implement the expanding protocol if no
ancestor already declares it. This protocol implementation relation can be declared as either protected or private to
restrict the scope of this predicate.

Modes and number of proofs

goal_expansion (+callable, -callable) - zero_or_one

Errors

(none)

Examples

goal_expansion (write (Term), (write_term(Term, []), nl)).
goal_expansion (read(Term), (write('Input: '), {read(Term)})).

See also:

expand_goal/2, expand_term/2, term_expansion/2, logtalk_load_context/2

2.5. Built-in methods 253

https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.21.0

2.5.11 Coinduction hooks

coinductive_success hook/1-2

Description

coinductive_success_hook (Head, Hypothesis)
coinductive_success_hook (Head)

User-defined hook predicates that are automatically called in case of coinductive success when proving a query for
a coinductive predicates. The hook predicates are called with the head of the coinductive predicate on coinductive
success and, optionally, with the hypothesis used that to reach coinductive success.

When both hook predicates are defined, the coinductive_success_hook/1 clauses are only used if no
coinductive_success_hook/2 clause applies. The compiler ensures zero performance penalties when defin-
ing coinductive predicates without a corresponding definition for the coinductive success hook predicates.

The compiler assumes that these hook predicates are defined as static predicates in order to optimize their use.

Modes and number of proofs

coinductive_success_hook (+callable, +callable) - zero_or_one
coinductive_success_hook (+callable) - zero_or_one

Errors

(none)

Examples

(none)
See also:
coinductive/l

2.5.12 Message printing

print_message/3

Description

print_message (Kind, Component, Term)

Built-in method for printing a message represented by a term, which is converted to the message text using the
logtalk::message_tokens(Term, Component) hook non-terminal. This method is declared in the logtalk built-in ob-
ject as a public predicate. The line prefix and the output stream used for each Kind-Component pair can be found
using the logtalk::message_prefix_stream(Kind, Component, Prefix, Stream) hook predicate.

254 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

This predicate starts by converting the message term to a list of tokens and by calling the
logtalk::message_hook(Message, Kind, Component, Tokens) hook predicate. If this predicate succeeds, the
print_message/ 3 predicate assumes that the message have been successfully printed.

Modes and number of proofs

print_message (+nonvar, +nonvar, +nonvar) - one

Errors

(none)

Examples

., logtalk::print_message (information, core, redefining_entity (object, foo0)),

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message_tokens/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

message_tokens//2

Description

message_tokens (Message, Component)

User-defined non-terminal hook used to rewrite a message term into a list of tokens and declared in the logtalk
built-in object as a public, multifile, and dynamic non-terminal. The list of tokens can be printed by calling the
print_message_tokens/3 method. This non-terminal hook is automatically called by the print_message/3 method.

Modes and number of proofs

message_tokens (+nonvar, +nonvar) - zero_or_more

Errors

(none)

Examples

:— multifile(logtalk: :message_tokens//2).
:— dynamic (logtalk::message_tokens//2).

logtalk: :message_tokens (redefining_entity(Type, Entity), core) ——>
['Redefining ~w ~gq'-[Type, Entity], nl].

2.5. Built-in methods 255

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

See also:

message_hook/4, message_prefix_stream/4, print_message/3, print_message_tokens/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

message _hook/4

Description

message_hook (Message, Kind, Component, Tokens)

User-defined hook method for intercepting printing of a message, declared in the logtalk built-in object as a public,
multifile, and dynamic predicate. This hook method is automatically called by the print_message/3 method. When the
call succeeds, the print_message/3 method assumes that the message have been successfully printed.

Modes and number of proofs

message_hook (@nonvar, @nonvar, (@nonvar, @list (nonvar)) - zero_or_one

Errors

(none)

Examples

:— multifile (logtalk::message_hook/4) .
:— dynamic (logtalk: :message_hook/4).

¢ print silent)
logtalk: :message_hook (_, silent, core, Tokens) :-—
logtalk: ::message_prefix_stream(silent, core, Prefix, Stream),
logtalk: :print_message_tokens (Stream, Prefix, Tokens).

messages 1nstead or ailsc 11Ng

See also:

message_prefix_stream/4, message_tokens//2, print_message/3, print_message_tokens/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

message_prefix_stream/4

Description

message_prefix_stream(Kind, Component, Prefix, Stream)

User-defined hook method for specifying the default prefix and stream for printing a message for a given kind and
component. This method is declared in the logtalk built-in object as a public, multifile, and dynamic predicate.

256 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

Modes and number of proofs

message_prefix_stream(?nonvar, ?nonvar, ?Zatom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:— multifile (logtalk::message_prefix_stream/4).
:— dynamic (logtalk: :message_prefix_stream/4) .

logtalk: :message_prefix_stream(information, core, '% ', user_output).

See also:

message_hook/4, message_tokens//2, print_message/3, print_message_tokens/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

print_message_tokens/3

Description

print_message_tokens (Stream, Prefix, Tokens)

Built-in method for printing a list of message tokens, declared in the logtalk built-in object as a public predicate. This
method is automatically called by the print_message/3 method (assuming that the message was not intercepted by a
message_hook/4 definition) and calls the user-defined hook predicate print_message_token/4 for each token. When a
call to this hook predicate succeeds, the print_message_tokens/3 predicate assumes that the token have been
printed. When the call fails, the print_message_tokens/3 predicate uses a default printing procedure for the
token.

Modes and number of proofs

print_message_tokens (@stream_or_alias, +atom, @list (nonvar)) - zero_or_one

Errors

(none)

Examples

.7
logtalk::print_message_tokens (user_error, '$ ', ['Redefining ~w ~g'-[object, fool,
f—»l.'ll]) ’

2.5. Built-in methods 257

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

print_message_token/4

Description

print_message_token (Stream, Prefix, Token, Tokens)

User-defined hook method for printing a message token, declared in the logtalk built-in object as a public, multifile, and
dynamic predicate. It allows the user to intercept the printing of a message token. This hook method is automatically
called by the print_message_tokens/3 built-in method for each token.

Modes and number of proofs

print_message_token (@stream_or_alias, (@atom, @nonvar, @list (nonvar)) - zero_or_one

Errors

(none)

Examples

:— multifile (logtalk::print_message_token/4) .
:— dynamic (logtalk: :print_message_token/4).

0. L. -~ 9~ 7 7 =7 o} +~ ~ N
s lgnore all flusn tokens

logtalk: :print_message_token(Stream, _Prefix, flush, _Tokens).

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3, print_message_tokens/3,
ask_question/5, question_hook/6, question_prompt_stream/4

2.5.13 Question asking

ask_question/5

Description

ask_question (Question, Kind, Component, Check, Answer)

Built-in method for asking a question represented by a term, Que st ion, which is converted to the question text using
the logtalk::message_tokens(Question, Component) hook predicate. This method is declared in the 1ogtalk built-in
object as a public predicate. The default question prompt and the input stream used for each Kind-Component
pair can be found using the logtalk::question_prompt_stream(Kind, Component, Prompt, Stream) hook predicate. The

258 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

Check argument is a closure that is converted into a checking goal by extending it with the user supplied answer. This
predicate implements a read-loop that terminates when the checking predicate succeeds.

This predicate starts by calling the logtalk::question_hook(Question, Kind, Component, Check, Answer) hook predi-
cate. If this predicate succeeds, the ask_question/5 predicate assumes that the question have been successfully
asked and replied.

Modes and number of proofs

ask_question (+nonvar, +nonvar, +nonvar, +callable, -term) - one

Meta-predicate template

ask_question (*, *, %, 1, =)

Errors

(none)

Examples

-7
logtalk::ask_qguestion (enter_age, question, my_app, integer, Age),

See also:

question_hook/6, question_prompt_stream/4, message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4

question_hook/6

Description

question_hook (Question, Kind, Component, Tokens, Check, Answer)

User-defined hook method for intercepting asking a question, declared in the logtalk built-in object as a public, multi-
file, and dynamic predicate. This hook method is automatically called by the ask_question/5 method. When the call
succeeds, the ask_question/5 method assumes that the question have been successfully asked and replied.

Modes and number of proofs

question_hook (+tnonvar, +nonvar, +nonvar, +1list(nonvar), +callable, -term) - zero_or_
—one

2.5. Built-in methods 259

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

Meta-predicate template

question_hook (%, =, *, *, 1, x)

Errors

(none)

Examples

:— multifile(logtalk::question_hook/6) .
:— dynamic (logtalk: :question_hook/6) .

use a pre—derined answer 1nstead oI as usetr

7

logtalk: :question_hook (upper_limit, questioﬁ, my_app, ., float, 3.7).

See also:

ask_question/5, question_prompt_stream/4 message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4,

question_prompt_stream/4

Description

question_prompt_stream(Kind, Component, Prompt, Stream)

User-defined hook method for specifying the default prompt and input stream for asking a question for a given kind
and component. This method is declared in the logtalk built-in object as a public, multifile, and dynamic predicate.

Modes and number of proofs

question_prompt_stream(?nonvar, ?nonvar, Zatom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:— multifile (logtalk::question_prompt_stream/4) .
:— dynamic (logtalk: :question_prompt_stream/4) .

logtalk::question_prompt_stream(question, debugger, ' > ', user_input) .

260 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.21.0

See also:

ask_question/5, question_hook/6, message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3,
print_message_tokens/3, print_message_token/4

2.5. Built-in methods 261

The Logtalk Handbook, Release v3.21.0

262 Chapter 2. Reference Manual

CHAPTER
THREE

TUTORIAL

3.1 List predicates

In this example, we will illustrate the use of:
* objects
* protocols

by using common list utility predicates.

3.1.1 Defining a list object

We will start by defining an object, 1ist, containing predicate definitions for some common list predicates like
append/3, length/2, and member/2:

:— object (list) .

:— public ([
append/3, length/2, member/2
1.

append ([], List, List).
append ([Head| Tail], List, [Head]| Tail2]) :—
append (Tail, List, Tail2).

length(List, Length) :-—
length(List, 0, Length).

length([], Length, Length).
length([_| Taill, Acc, Length) :-—
Acc?2 is Acc + 1,
length(Tail, Acc2, Length).
member (Element, [Element| _]).
member (Element, [_| List]) :—

member (Element, List).

:— end_object.

What is different here from a regular Prolog program? The definitions of the list predicates are the usual ones. We
have two new directives, object/I-5 and end_object/0, that encapsulate the object’s code. In Logtalk, by default, all
object predicates are private; therefore, we have to explicitly declare all predicates that we want to be public, that is,
that we want to call from outside the object. This is done using the public/I scope directive.

263

The Logtalk Handbook, Release v3.21.0

After we copy the object code to a text file and saved it under the name 1ist.lgt, we need to change the Prolog
working directory to the one used to save our file (consult your Prolog compiler reference manual). Then, after starting
Logtalk (see the Installing and running Logtalk section on the User Manual), we can compile and load the object using
the logtalk_load/I Logtalk built-in predicate:

| ?- logtalk_load(list).

object list loaded
yes

We can now try goals like:

| ?-= list::member (X, [1, 2, 3]).

X =1;
X = 2;
X = 3;
no
or:

| ?- list::length([1, 2, 31, L).

L =3
yes

The infix operator :./2 is used in Logtalk to send a message to an object. The message must match a public object
predicate. If we try to call a non-public predicate such as the length/3 auxiliary predicate an exception will be
generated:

| ?- list::length([1l, 2, 3], 0, L).

uncaught exception:
error (
existence_error (predicate_declaration, length/3),
logtalk(list::length([1,2,3]1,0,_), ...)

The exception term describes the type of error and the context where the error occured.

3.1.2 Defining a list protocol

As we saw in the above example, a Logtalk object may contain predicate directives and predicate definitions (clauses).
The set of predicate directives defines what we call the object’s protocol or interface. An interface may have several
implementations. For instance, we may want to define a new object that implements the list predicates using difference
lists. However, we do not want to repeat the predicate directives in the new object. Therefore, what we need is to split
the object’s protocol from the object’s implementation by defining a new Logtalk entity known as a protocol. Logtalk
protocols are compilations units, at the same level as objects and categories. That said, let us define a 1i stp protocol:

:— protocol (listp).
:— public ([
append/3, length/2, member/2
1)

:— end_protocol.

264 Chapter 3. Tutorial

../userman/installing.html#programming

The Logtalk Handbook, Release v3.21.0

Similar to what we have done for objects, we use the protocol/I-2 and end_protocol/0 directives to encapsulate the
predicate directives. We can improve this protocol by documenting the call/return modes and the number of proofs of
each predicate using the mode/2 directive:

:— protocol (listp).

:— public (append/3) .
:— mode (append (?list, ?list, ?list), zero_or_more).

:— public(length/2).
:— mode (length(?list, ?integer), zero_or_more).

:— public (member/2) .
:— mode (member (?term, ?list), zero_or_more).

:— end_protocol.

We now need to change our definition of the 1ist object by removing the predicate directives and by declaring that
the object implements the 11 stp protocol:

:— object (list,
implements (listp)) .

append([], List, List).

append ([Head| Tail], List, [Head]| Tail2]) :—
append (Tail, List, Tail2).

:— end_object.

The protocol declared in 11 stp may now be alternatively implemented using difference lists by defining a new object,
difflist:

:— object (difflist,
implements (listp) .

append (L1-X, X-L2, L1-L2).

:— end_object.

3.1.3 Summary

* It is easy to define a simple object: just put your Prolog code inside starting and ending object directives and
add the necessary scope directives. The object will be self-defining and ready to use.

* Define a protocol when you may want to provide or enable several alternative definitions to a given set of
predicates. This way we avoid needless repetition of predicate directives.

3.2 Dynamic object attributes

In this example, we will illustrate the use of:

* categories

3.2. Dynamic object attributes 265

The Logtalk Handbook, Release v3.21.0

* category predicates
* dynamic predicates

by defining a category that implements a set of predicates for handling dynamic object attributes.

3.2.1 Defining a category

We want to define a set of predicates to handle dynamic object attributes. We need public predicates to set, get,
and delete attributes, and a private dynamic predicate to store the attributes values. Let us name these predicates
set_attribute/2 and get_attribute/2, for getting and setting an attribute value, del_attribute/2
and del_attributes/2, for deleting attributes, and attribute_/2, for storing the attributes values.

But we do not want to encapsulate these predicates in an object. Why? Because they are a set of useful, closely related,
predicates that may be used by several, unrelated, objects. If defined at an object level, we would be constrained to
use inheritance in order to have the predicates available to other objects. Furthermore, this could force us to use
multi-inheritance or to have some kind of generic root object containing all kinds of possible useful predicates.

For this kind of situation, Logtalk enables the programmer to encapsulate the predicates in a category, so that they
can be used in any object. A category is a Logtalk entity, at the same level as objects and protocols. It can contain
predicates directives and/or definitions. Category predicates can be imported by any object, without code duplication
and without resorting to inheritance.

When defining category predicates, we need to remember that a category can be imported by more than one object.
Thus, the calls to the built-in methods that handle the private dynamic predicate (such as assertz/I or retract/I) must
be made either in the context of self, using the message to self control structure, ::/I, or in the context of this (i.e. in
the context of the object importing the category). This way, we ensure that when we call one of the attribute predicates
on an object, the intended object own definition of attribute_/2 will be used. The predicates definitions are
straightforward. For example, if opting for storing the attributes in self:

:— category (attributes) .

:— public(set_attribute/2).
:— mode (set_attribute (+nonvar, +nonvar), one).

:— public(get_attribute/2).
:— mode (get_attribute (?nonvar, ?nonvar), zero_or_more).

:— public(del_attribute/2).
:— mode (del_attribute (?nonvar, ?nonvar), zero_or_more) .

:— public(del_attributes/2).
:— mode (del_attributes (Cterm, (@term), one).

:— private (attribute_/2).
:— mode (attribute_ (?nonvar, ?nonvar), zero_or_more).
:— dynamic (attribute_/2) .

set_attribute (Attribute, Value) :—
::retractall (attribute_ (Attribute, _))

4
::assertz (attribute_ (Attribute, Value)).

get_attribute (Attribute, Value) :-
:rattribute_(Attribute, Value).

del_attribute (Attribute, Value) :-—
::retract (attribute_ (Attribute, Value)).

(continues on next page)

266 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.21.0

(continued from previous page)

del_attributes (Attribute, Value) :—
::retractall (attribute_(Attribute, Value)).

:— end_category.

The alternative, opting for storing the attributes on this, is similar: just delete the uses of the : : /1 control structure
from the code above.

We have two new directives, category/I-3 and end_category/0, that encapsulate the category code. If needed, we can
put the predicates directives inside a protocol that will be implemented by the category:

:— category (attributes,
implements (attributes_protocol)).

:— end_category.

Any protocol can be implemented by either an object, a category, or both.

3.2.2 Importing the category

We reuse a category’s predicates by importing them into an object:

:— object (person,
imports (attributes)) .

:— end_object.

After compiling and loading this object and our category, we can now try queries like:

| ?- person::set_attribute (name, paulo).

yes

| ?- person::set_attribute (gender, male).

yes

| ?- person::get_attribute (Attribute, Value).
Attribute = name, Value = paulo ;

Attribute = gender, Value = male ;
no

3.2.3 Summary
* Categories are similar to objects: we just write our predicate directives and definitions bracketed by opening and
ending category directives.

* An object reuses a category by importing it. The imported predicates behave as if they have been defined in the
object itself.

3.2. Dynamic object attributes 267

The Logtalk Handbook, Release v3.21.0

* When do we use a category instead of an object? Whenever we have a set of closely related predicates that we
want to reuse in several, unrelated, objects without being constrained by inheritance relations. Thus, categories
can be interpreted as object building components.

3.3 A reflective class-based system

When compiling an object, Logtalk distinguishes prototypes from instance or classes by examining the object relations.
If an object instantiates and/or specializes another object, then it is compiled as an instance or class, otherwise it is
compiled as a prototype. A consequence of this is that, in order to work with instance or classes, we always have
to define root objects for the instantiation and specialization hierarchies (however, we are not restricted to a single
hierarchy). The best solution is often to define a reflective class-based system [Maes87], where every class is also an
object and, as such, an instance of some class.

In this example, we are going to define the basis for a reflective class-based system, based on an extension of the
ideas presented in [Cointe87]. This extension provides, along with root objects for the instantiation and specialization
hierarchies, explicit support for abstract classes [Moura94].

3.3.1 Defining the base classes

We will start by defining three classes: object, abstract_class, and class. The class object will contain
all predicates common to all objects. It will be the root of the inheritance graph:

:— object (object,
instantiates (class)) .

prealrcatecs commor Cc A1 L O

:— end_object.

The class abstract_class specializes object by adding predicates common to all classes. It will be the default
meta-class for abstract classes:

:— object (abstract_class,
instantiates(class),
specializes (object)) .

:— end_object.

The class class specializes abstract_class by adding predicates common to all instantiable classes. It will be
the root of the instantiation graph and the default meta-class for instantiable classes:

:— object (class,
instantiates(class),
specializes (abstract_class)) .

:— end_object.

Note that all three objects are instances of class class. The instantiation and specialization relationships are chosen
so that each object may use the predicates defined in itself and in the other two objects, with no danger of method
lookup endless loops.

268 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.21.0

3.3.2 Summary

* An object that does not instantiate or specialize other objects is always compiled as a prototype.

¢ An instance must instantiate at least one object (its class). Similarly, a class must at least specialize or instantiate
other object.

» The distinction between abstract classes and instantiable classes is an operational one, depending on the class
inherited methods. A class is instantiable if inherits methods for creating instances. Conversely, a class is
abstract if does not inherit any instance creation method.

3.4 Profiling programs

In this example, we will illustrate the use of:
e events
e monitors

by defining a simple profiler that prints the starting and ending time for processing a message sent to an object.

3.4.1 Messages as events

In a pure object-oriented system, all computations start by sending messages to objects. We can thus define an event
as the sending of a message to an object. An event can then be specified by the tuple (Object, Message,
Sender). This definition can be refined by interpreting the sending of a message and the return of the control to
the object that has sent the message as two distinct events. We call these events respectively before and after.
Therefore, we end up by representing an event by the tuple (Event, Object, Message, Sender). For
instance, if we send the message:

| ?- foo::bar(X).

X =1
yes

the two corresponding events will be:

(before, foo, bar (X), user)
(after, foo, bar(l), user)

Note that the second event is only generated if the message succeeds. If the message as a goal have multiple solutions,
then one after event will be generated for each solution.

Events are automatically generated by the message sending mechanisms for each public message sent using the ::/2
operator.

3.4.2 Profilers as monitors

A monitor is an object that reacts whenever a spied event occurs. The monitor actions are defined by two event
handlers: before/3 for before events and after/3 for after events. These predicates are automatically called by the
message sending mechanisms when an event registered for the monitor occurs. These event handlers are declared as
public predicates in the monitoring built-in protocol.

In our example, we need a way to get the current time before and after we process a message. We will assume that we
have a t ime object implementing a cpu_time/1 predicate that returns the current CPU time for the Prolog session:

3.4. Profiling programs 269

The Logtalk Handbook, Release v3.21.0

:— object (time) .

:— public(cpu_time/1).
:— mode (cpu_time (—number), one).

:— end_object.

Our profiler will be named st op_watch. It must define event handlers for the before and after events that will
print the event description (object, message, and sender) and the current time:

:— object (stop_watch,

event hnandler predicates protocodl

implements (monitoring)) .

:— uses (time, [cpu_time/1]).

before (Object, Me ge, Sender) :-—
write (Object), write(' <-- '), writeq(Message),
write (' from '), write(Se ~r), nl, write('STARTING at '),
cpu_time (Seconds), write (S onds), write(' seconds'), nl.
after (Object, sage, Sender) :-—
write (Ob] t), write(' <-- '), writeq(Message),

"), nl, write('ENDING at '),
onds), write(' seconds'), nl.

write (' from '), write(Ser
cpu_time (Sec ls), write(Sec

:— end_object.

After compiling and loading the stop_watch object (and the objects that we want to profile), we can use the
define_events/5 built-in predicate to set up our profiler. For example, to profile all messages that are sent to the object
foo, we need to call the goal:

| ?- define_events(_, foo, _, _, stop_watch).

yes

This call will register st op_watch as a monitor to all messages sent to object foo, for both before and after
events. Note that we say “as a monitor”, not “the monitor”: we can have any number of monitors over the same events.

From now on, every time we sent a message to foo, the stop_watch monitor will print the starting and ending
times for the message execution. For instance:

| ?- foo::bar(X).

foo <-- bar (X) from user
STARTING at 12.87415 seconds
foo <-- bar(l) from user
ENDING at 12.87419 seconds

X =1
yes

To stop profiling the messages sent to foo we use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, foo, _, _, stop_watch).

yes

270 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.21.0

This call will abolish all events defined over the object foo assigned to the st op_wat ch monitor.

3.4.3 Summary

* An event is defined as the sending of a (public) message to an object.

* There are two kinds of events: be fore events, generated before a message is processed, and after events,
generated after the message processing completed successfully.

* Any object can be declared as a monitor to any event. A monitor shall reference the monitoring built-in
protocol in the object opening directive.

* A monitor defines event handlers, the predicates before/3 and after/3, that are automatically called by the runtime
engine when a spied event occurs.

* Three built-in predicates, define_events/5, current_event/5, and abolish_events/5, enables us define, query, and
abolish both events and monitors.

3.4. Profiling programs 271

The Logtalk Handbook, Release v3.21.0

272 Chapter 3. Tutorial

CHAPTER
FOUR

FAQ

4.1 General

o Why are all versions of Logtalk numbered 2.x or 3.x?
e Why do I need a Prolog compiler to use Logtalk?
e [s the Logtalk implementation based on Prolog modules?

* Does the Logtalk implementation use term-expansion?

4.1.1 Why are all versions of Logtalk numbered 2.x or 3.x?

The numbers “2” and “3” in the Logtalk version string refers to, respectively, the second and the third generations of
the Logtalk language. Development of Logtalk 2 started on January 1998, with the first alpha release for registered
users on July and the first public beta on October. The first stable version of Logtalk 2 was released on February 9,
1999. Development of Logtalk 3 started on April 2012, with the first public alpha released on August 21, 2012. The
first stable version of Logtalk 3 was released on January 7, 2015.

4.1.2 Why do | need a Prolog compiler to use Logtalk?

Currently, the Logtalk language is implemented as a Prolog extension instead of as a standalone compiler. Compilation
of Logtalk source files is performed in two steps. First, the Logtalk compiler converts a source file to a Prolog file.
Second, the chosen Prolog compiler is called by Logtalk to compile the intermediate Prolog file generated on the first
step. The implementation of Logtalk as a Prolog extension allows users to use Logtalk together with features only
available on specific Prolog compilers.

4.1.3 Is the Logtalk implementation based on Prolog modules?

No. Logtalk is (currently) implemented is plain Prolog code. Only a few Prolog compilers include a module system,
with several compatibility problems between them. Moreover, the current ISO Prolog standard for modules is next
to worthless and is ignored by most of the Prolog community. Nevertheless, the Logtalk compiler is able to compile
simple modules (using a common subset of module directives) as objects for backward-compatibility with existing
code (see the Prolog integration and migration guide for details).

4.1.4 Does the Logtalk implementation use term-expansion?

No. Term-expansion mechanisms are not standard and are not available in all supported Prolog compilers.

273

The Logtalk Handbook, Release v3.21.0

4.2 Compatibility

* What are the backend Prolog compiler requirements to run Logtalk?
e Can I use constraint-based packages with Logtalk?

e Can I use Logtalk objects and Prolog modules at the same time?

4.2.1 What are the backend Prolog compiler requirements to run Logtalk?

See the wiki page on backend Prolog compiler requirements.

4.2.2 Can | use constraint-based packages with Logtalk?

Usually, yes. Some constraint-based packages may define operators which clash with the ones defined by Logtalk.
In these cases, compatibility with Logtalk depends on the constraint-based packages providing an alternative for
accessing the functionality provided by those operators. When the constraint solver is encapsulated using a Prolog
module, a possible workaround is to use either explicit module qualification or encapsulate the call using the {}//
control construct (thus bypassing the Logtalk compiler).

4.2.3 Can | use Logtalk objects and Prolog modules at the same time?

Yes. In order to call a module predicate from within an object (or category) you may use an use_module/2 directive
or use explicit module qualification (possibly wrapping the call using the Logtalk control construct {/// that allows
bypassing of the Logtalk compiler when compiling a predicate call). Logtalk also allows modules to be compiled as
objects (see the Prolog integration and migration guide for details).

4.3 Installation

* The integration scripts/shortcuts are not working!

* [get errors when starting up Logtalk after upgrading to the latest version!

4.3.1 The integration scripts/shortcuts are not working!

Check that the LOGTALKHOME and LOGTALKUSER environment variables are defined, that the Logtalk user
folder is available on the location pointed by LOGTALKUSER (you can create this folder by running the
logtalk_user_setup shell script), and that the Prolog compilers that you want to use are supported and available
from the system path. If the problem persists, run the shell script that creates the integration script or shortcut manually
and check for any error message or additional instructions. For some Prolog compilers such as XSB and Ciao, the first
call of the integration script or shortcut must be made by an administrator user. If you are using Windows, make sure
that any anti-virus or other security software that you might have installed is not silently blocking some of the installer
tasks.

4.3.2 | get errors when starting up Logtalk after upgrading to the latest version!

Changes in the Logtalk compiler between releases may render Prolog adapter files from older versions incompatible
with new ones. You may need to update your local Logtalk user files by running e.g. the logtalk_user_setup

274 Chapter 4. FAQ

https://github.com/LogtalkDotOrg/logtalk3/wiki/Backend-Prolog-compiler-requirements

The Logtalk Handbook, Release v3.21.0

shell script. Check the UPGRADING.md file on the root of the Logtalk installation directory and the release notes for
any incompatible changes to the adapter files.

4.4 Portability

* Are my Logtalk applications portable across Prolog compilers?

* Are my Logtalk applications portable across operating systems?

4.4.1 Are my Logtalk applications portable across Prolog compilers?

Yes, as long you don’t use built-in predicates or special features only available on some Prolog compilers. There is
a compiler flag (portability) that you can set to instruct Logtalk to print a warning for each occurrence of non-
ISO Prolog standard features such as proprietary built-in predicates. In addition, it is advisable that you constrain, if
possible, the use of platform or compiler dependent code to a small number of objects with clearly defined protocols.
You may also use Logtalk support for conditional compilation to compile different entity or predicate definitions
depending on the backend Prolog compiler being used.

4.4.2 Are my Logtalk applications portable across operating systems?

Yes, as long you don’t use built-in predicates or special features that your chosen backend Prolog compiler only
supports in some operating-systems. You may need to change the end-of-lines characters of your source files to match
the ones on the target operating system and the expectations of your Prolog compiler. Some Prolog compilers silently
fail to compile source files with the wrong end-of-lines characters.

4.5 Programming

e Should I use prototypes or classes in my application?

* Can I use both classes and prototypes in the same application?

* Can I mix classes and prototypes in the same hierarchy?

* Can I use a protocol or a category with both prototypes and classes?

» What support is provided in Logtalk for defining and using components?

* What support is provided in Logtalk for reflective programming?

4.5.1 Should I use prototypes or classes in my application?

Prototypes and classes provide different patterns of code reuse. A prototype encapsulates code that can be used by
itself and by its descendent prototypes. A class encapsulates code to be used by its descendent instances. Prototypes
provide the best replacement to the use of modules as encapsulation units, avoiding the need to instantiate a class in
order to access its code.

4.5.2 Can | use both classes and prototypes in the same application?

Yes. In addition, you may freely exchange messages between prototypes, classes, and instances.

4.4. Portability 275

The Logtalk Handbook, Release v3.21.0

4.5.3 Can | mix classes and prototypes in the same hierarchy?

No. However, you may define as many prototype hierarchies and class hierarchies and classes as needed by your
application.

4.5.4 Can | use a protocol or a category with both prototypes and classes?

Yes. A protocol may be implemented by both prototypes and classes in the same application. Likewise, a category
may be imported by both prototypes and classes in the same application.

4.5.5 What support is provided in Logtalk for defining and using components?

Logtalk supports component-based programming (since its inception on January 1998), by using categories (which
are first-class entities like objects and protocols). Logtalk categories can be used with both classes and prototypes and
are inspired on the Smalltalk-80 (documentation-only) concept of method categories and on Objective-C categories,
hence the name. For more information, please consult the Categories section and the examples provided with the
distribution.

4.5.6 What support is provided in Logtalk for reflective programming?

Logtalk supports meta-classes, behavioral reflection through the use of event-driven programming, and structural
reflection through the use of a set of built-in predicates and built-in methods which allow us to query the system about
existing entities, entity relations, and entity predicates.

4.6 Troubleshooting

» Using compiler options on calls to the Logtalk compiling and loading predicates do not work!
* Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

* Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation
with zero errors and zero warnings!

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predi-
cates do not work!

Using compiler options on calls to the Logtalk logtalk_compile/2 and logtalk _load/2 built-in predicates only apply the
file being compiled. If the first argument is a loader file, the compiler options will only be used in the compilation of
the loader file itself, not in the compilation of the files loaded by the loader file. The solution is to edit the loader file
and add the compiler options to the calls that compile/load the individual files.

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when
browsing XML documenting files!

Using Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities (e.g. sndash;) when browsing XML
documenting files after running the 1gt2xml shell script in the directory containing the XML documenting files.
This is a consequence of the lack of support for the disable—-output-escaping attribute in the browser XSLT
processor. The workaround is to use other browser (e.g. Safari or Opera) or to use instead the 1gt2htm1 shell script
in the directory containing the XML documenting files to convert them to (X)HTML files for browsing.

276 Chapter 4. FAQ

The Logtalk Handbook, Release v3.21.0

4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler
reports a successful compilation with zero errors and zero warnings!

This may happen when your Prolog compiler implementation of the ISO Prolog standard write_canonical/2
built-in predicate is buggy and writes terms that cannot be read back when consulting the intermediate Prolog files
generated by the Logtalk compiler. Often, syntax errors found when consulting result in error messages but not in ex-
ceptions as the Prolog compiler tries to continue the compilation despite the problems found. As the Logtalk compiler
relies on the exception mechanisms to catch compilation problems, it may report zero errors and zero warnings despite
the error messages. Send a bug report to the Prolog compiler developers asking them to fix the write_canonical/
2 buggy implementation.

4.7 Usability

e [s there a shortcut for compiling and loading source files?
e [s there an equivalent directive to the ensure_loaded/1 Prolog directive?

* Are there shortcuts for the make functionality?

4.7.1 Is there a shortcut for compiling and loading source files?
Yes. With most backend Prolog compilers, you can use {File} as a shortcut for logtalk_load(File).

For compiling and loading multiple files simply use {Filel, File2, ...}. See the documentation of the
logtalk_load/I predicate for details.

4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

You can use the goal logtalk_load(File, [reload(skip)]) toensurethatFile isonlyloaded once. See
the documentation of the logtalk_load/2 predicate for details.

4.7.3 Are there shortcuts for the make functionality?

Yes. With most backend Prolog compilers, you can use {*} as a shortcut for logtalk_make (all) to
reload all files modified since last compiled and loaded, {'!} as a shortcut for logtalk_make (clean)
to delete all intermediate Prolog files generated by the compilation of Logtalk source files, {?} as a short-
cut for logtalk_make (missing) to list missing entities and predicates, and {@} as a shortcut for
logtalk_make (circular) to list circular references. See the documentation of the logralk_make/I predicate
for details.

4.8 Deployment

e Can I create standalone applications with Logtalk?

4.8.1 Can | create standalone applications with Logtalk?

It depends on the Prolog compiler that you use to run Logtalk. Assuming that your Prolog compiler supports the
creation of standalone executables, your application must include the adapter file for your compiler and the Logtalk

4.7. Usability 277

The Logtalk Handbook, Release v3.21.0

compiler and runtime. The distribution includes embedding scripts for selected backend Prolog compilers and embed-
ding examples.

For instructions on how to embed Logtalk and Logtalk applications see the wiki section on embedding.

4.9 Performance

* Is Logtalk implemented as a meta-interpreter?

What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?
* How about message-sending performance? Does Logtalk use static binding or dynamic binding?

* How does Logtalk performance compare with plain Prolog and with Prolog modules?

4.9.1 Is Logtalk implemented as a meta-interpreter?

No. Objects and their encapsulated predicates are compiled, not meta-interpreted. In particular, inheritance relations
are pre-compiled for improved performance. Moreover, no meta-interpreter is used even for objects compiled in debug
mode.

4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic
code? Static code?

Static objects are compiled to static code. Static objects containing dynamic predicates are also compiled to static
code, except, of course, for the dynamic predicates themselves. Dynamic objects are necessarily compiled to dynamic
code. As in Prolog programming, for best performance, dynamic object predicates and dynamic objects should only
be used when truly needed.

4.9.3 How about message-sending performance? Does Logtalk use static binding
or dynamic binding?

Logtalk supports both static binding and dynamic binding. When static binding is not possible, Logtalk uses dynamic
binding coupled with a caching mechanism that avoids repeated lookups of predicate declarations and predicate def-
initions. This is a solution common to other programming languages supporting dynamic binding. Message lookups
are automatically cached the first time a message is sent. Cache entries are automatically removed when loading enti-
ties or using Logtalk dynamic features that invalidate the cached lookups. Whenever static binding is used, message
sending performance is essentially the same as a predicate call in plain Prolog. Performance of dynamic binding when
lookups are cached is close to the performance that would be achieved with static binding. See the wiki section on
performance for more details.

4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk perfor-
mance?

Logtalk compiles objects assuming first-argument indexing for static code. First-argument indexing of dynamic code,
when available, helps to improve performance due to the automatic caching of method lookups and the necessary
use of book-keeping tables by the runtime engine (this is specially important when using event-driven programming).
Dynamic objects and static objects containing dynamic predicates also benefit from first-argument indexing of dynamic
predicates. The availability of multi-argument indexing, notably for dynamic predicates, also benefits dynamic binding
performance.

278 Chapter 4. FAQ

https://github.com/LogtalkDotOrg/logtalk3/wiki/Embedding-Logtalk
https://github.com/LogtalkDotOrg/logtalk3/wiki/Performance

The Logtalk Handbook, Release v3.21.0

4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog
modules?

Plain Prolog, Prolog modules, and Logtalk objects provide different trade-offs between performance and features.
In general, for a given predicate definition, the best performance will be attained using plain Prolog, second will
be Prolog modules (assuming no explicitly qualified calls are used), and finally Logtalk objects. Whenever static
binding is used, the performance of Logtalk is equal or close to that of plain Prolog (depending on the Prolog virtual
machine implementation and compiler optimizations). See the simple benchmark test results using some popular
Prolog compilers.

4.10 Licensing

* What’s the Logtalk distribution license?
* Can Logtalk be used in commercial applications?

* What’s the final license for a combination of Logtalk with a Prolog compiler?

4.10.1 What’s the Logtalk distribution license?

Logtalk follows the Apache License 2.0.

4.10.2 Can Logtalk be used in commercial applications?

Yes, the Apache License 2.0 allows commercial use. See e.g. the Apache License and Distribution FAQ.

4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler?

See the wiki page on licensing for details and relevant resources.

4.11 Support

* Are there professional consulting, training and supporting services?

4.11.1 Are there professional consulting, training and supporting services?

Yes. Please visit logtalk.pt for professional consulting, developing, training, and other supporting services.

4.10. Licensing 279

https://logtalk.org/performance.html
https://github.com/LogtalkDotOrg/logtalk3/blob/master/LICENSE.txt
http://www.apache.org/foundation/license-faq.html
https://github.com/LogtalkDotOrg/logtalk3/wiki/Licensing
https://logtalk.pt

The Logtalk Handbook, Release v3.21.0

280 Chapter 4. FAQ

CHAPTER
FIVE

GLOSSARY

abstract class A class that cannot be instantiated. Usually used to contain common predicates that are inherited by
other classes.

abstract method A method implementing an algorithm whose step corresponds to calls to methods defined in the
descendants of the object (or category) containing it.

adapter file A Prolog source file defining a minimal abstraction layer between the Logtalk compiler/runtime and a
specific backend Prolog compiler.

ancestor A class or a parent profotype that contributes (via inheritance) to the definition of an object. For class-
based hierarchies, the ancestors of an instance are its class(es) and all the superclasses of its class(es). For
prototype-based hierarchies, the ancestors of a prototype are its parent(s) and the ancestors of its parent(s).

built-in method A predefined merhod that can be called from within any object or category. Built-in methods cannot
be redefined.

built-in predicate A predefined predicate that can be called from anywhere. Built-in predicates can be redefined
within objects and categories.

category A set of predicates directives and clauses that can be (virtually) imported by any object. Categories support
composing objects using fine-grained units of code reuse and also /ot patching of existing objects. A category
should be functionally-cohesive, defining a single functionality.

class An object that specializes another object, interpreted as its superclass. Classes define the common predicates of
a set of objects that instantiates it. An object can also be interpreted as a class when it instantiates itself.

closed-world assumption The assumption that what cannot be proved true is false. Therefore, sending a message
corresponding to a declared but not defined predicate, or calling a declared predicate with no clauses, fails. But
messages or calls to undeclared predicates generate an error.

coinductive predicate A predicate whose calls are proved using greatest fixed point semantics. Coinductive predi-
cates allows reasoning about infinite rational entities such as cyclic terms and w-automata.

complementing category A category used for /0t patching an existing object (or a set of objects).

directive A source file term that affects the interpretation of source code. Directives use the (:—) /1 prefix operator
as functor.

doclet file A source file whose main purpose is to generate documentation for e.g. a library or an application.

doclet object An object specifying the steps necessary to (re)generate the API documentation for a project. See the
doclet and 1gtdoc tools for details.

dynamic binding Runtime lookup of a predicate declaration and definition to verify the validity of a message (or a
super call) and find the predicate definition that will be used to answer the message (or the super call). Also
known as late binding. See also static binding.

281

The Logtalk Handbook, Release v3.21.0

encapsulation The hiding of an object implementation. This promotes software reuse by isolating the object clients
from its implementation details. Encapsulation is enforced in Logtalk by using predicate scope directives.

entity Generic name for Logtalk compilation units: objects, categories, and protocols. Entities share a single names-
pace (i.e. entity identifiers must be unique).

entity directive A directive that affects how Logtalk entities (objects, categories, or protocols) are used or compiled.

event The sending of a message to an object. An event can be expressed as an ordered tuple: (Event, Object,
Message, Sender). Logtalk distinguish between the sending of a message — before event — and the
return of control to the sender — after event.

grammar rule An alternative notation for predicates used to parse or generate sentences on some language. This
notation hides the arguments used to pass the sequences of tokens being processed, thus simplifying the repre-
sentation of grammars. Grammar rules are represented using as functor the infix operator (—->) /2 instead of
the (:-) /2 operator used with predicate clauses.

grammar rule non-terminal A syntactic category of words or phrases. A non-terminal is identified by its non-
terminal indicator, i.e. by its name and number of arguments using the notation Name//Arity.

grammar rule terminal A word or basic symbol of a language.

hook object An object, implementing the expanding built-in protocol, defining term- and goal-expansion pred-
icates, used in the compilation of Logtalk or Prolog source files. A hook object can be specified using the
compiler flag hook/1. It can also be specified using a ser_logtalk_flag/2 directive in the source files to be
expanded.

hot patching The act of fixing entity directives and predicates or adding new entity directives and predicates to loaded
entities in a running application without requiring access to the entities source code or restarting the application.

identity Property of an entity that distinguishes it from every other entity. Object and category identifiers can be atoms
or compound terms. Protocol identities must be atoms. All Logtalk entities (objects, protocols, and categories)
share the same namespace.

inheritance An entity inherits predicate directives and clauses from related entities. In the particular case of ob-
jects, when an object extends other object, we have prototype-based inheritance. When an object specializes or
instantiates another object, we have class-based inheritance.

instance An object that instantiates another object, interpreted as its class.

instantiation The process of creating a new class instance. In Logtalk, this does not necessarily imply dynamic
creation of an object at runtime; an instance may also be defined as a static object in a source file.

lambda expression A compound term that can be used in place of a goal or closure meta-argument and that ab-
stracts a predicate definition by listing its variables and a callable term that implements the definition. Lambda
expressions help avoiding the need of naming and defining auxiliary predicates.

lambda free variable A variable that is global to a lambda expression. All used global variables must be explicitly
listed in a lambda expression.

lambda parameter A term (usually a variable or a non-ground compound term) that is local to a lambda expression.
All lambda parameters must be explicitly enumerated in a lambda expression.

library A directory containing source files. The library name can be used as an alias to the directory path when com-
piling and loading source files using the notation 1ibrary_name ('source_file_relative_path').
Library names and their paths are defined using the logralk_library_path/2 predicate.

loader file A source file whose main purpose is to load a set of source files.

local predicate A predicate that is defined in an object (or in a category) but that is not listed in a scope directive.
These predicates behave like private predicates but are invisible to the reflection built-in methods. Local predi-
cates are usually auxiliary predicates and only relevant to the entity where they are defined.

282 Chapter 5. Glossary

The Logtalk Handbook, Release v3.21.0

message A query sent to an object. In logical terms, a message can be seen as a request for proof construction using
an object database and the databases of related entities.

message to self A message sent to the object that received the original message under processing. Messages to self
require dynamic binding as the value of self is only know at runtime.

meta-argument A predicate argument that is called as a goal, used as a closure to construct a goal that will be called,
or that is handled in a way that requires awareness of the predicate calling context.

meta-interpreter A program capable of running other programs written in the same language.

meta-predicate A predicate with one or more meta-arguments. For example, call/I-N and findall/3 are built-in meta-
predicates.

metaclass The class of a class, when interpreted as an instance. Metaclass instances are themselves classes.

method The predicate definition used to answer a message sent to an object. Logtalk supports both static binding and
dynamic binding to find which method to run to answer a message.

module A Prolog entity characterized by an identity and a set of predicate directives and clauses. Prolog modules are
usually static although some Prolog systems allow the creation of dynamic modules at runtime. Prolog modules
can be seen as prototypes.

monitor Any object, implementing the monitoring built-in protocol, that is notified by the runtime when a spied
event occurs. The spied events can be set by the monitor itself or by any other object.

multifile predicate A predicate whose clauses can be defined in multiple entities. The object or category holding
the directive without an entity prefix qualifying the predicate holds the multifile predicate primary declaration,
which consists of both a scope directive and amultifile/1 directive for the predicate.

object An entity characterized by an identity and a set of predicate directives and clauses. Logtalk objects can be
either static or dynamic. Logtalk objects can play the role of classes, instances, or prototypes. The role or roles
an object plays are a function of its relations with other objects.

object database The set of predicates locally defined inside an object.

parameter An argument of a parametric object or a parametric category identifier. Parameters are logical variables
implicitly shared by all the entity predicate clauses.

parameter variable A variable used as parameter in a parametric object or a parametric category using the syn-
tax _VariableName_. Occurrences of parameter variables in entity clauses are implicitly unified with the
corresponding entity parameters.

parametric category See parametric entity.

parametric entity An object or category whose identifier is a compound term containing free variables that can be
used to parameterize the entity predicates. Parameters are logical variables implicitly shared by all the entity
clauses.

parametric object See parametric entity.

parametric object proxy A compound term (usually represented as a plain Prolog fact) with the same name and
number of arguments as the identifier of a parametric object.

parent A prototype that is extended by another prototype.

predicate Predicates describe what is true about the application domain. A predicate is identified by its predicate
indicator, i.e. by its name and number of arguments using the notation Name /Arity.

predicate alias An alternative functor (Name /Arity) for a predicate. Predicate aliases can be defined for any inher-
ited predicate using the alias/2 directive and for predicates listed in uses/2 and use_module directives.
Predicate aliases can be used to solve inheritance conflicts and to improve code clarity by using alternative
names that are more meaningful in the calling context.

283

The Logtalk Handbook, Release v3.21.0

predicate directive A directive that affects how predicates are called or compiled.

predicate scope container The object that inherits a predicate declaration from an imported category or an imple-
mented protocol.

predicate scope directive A directive that declares a predicate by specifying its visibility (public, protected, or pri-
vate).

primary predicate declaration See multifile predicate.

private inheritance All public and protected predicates are inherited as private predicates.

private predicate A predicate that can only be called from the object that contains the scope directive.

profiler A program that collects data about other program performance.

protected inheritance All public predicates are inherited as protected. No change for protected or private predicates.

protected predicate A predicate that can only be called from the object containing the scope directive or from an
object that inherits the predicate.

protocol An entity that contains predicate declarations. A predicate is declared using a scope directive. It may
be further specified by additional predicate directives. Protocols support the separation between interface and
implementation, can be implemented by both objects and categories, and can be extended by other protocols. A
protocol should be functionally-cohesive, specifying a single functionality.

prototype A self-describing object that may extend or be extended by other objects. An object with no instantiation
or specialization relations with other objects is always interpreted as a prototype.

public inheritance All inherited predicates maintain their declared scope.
public predicate A predicate that can be called from any object.
self The object that received the message under processing.

sender An object that sends a message to other object. When a message is sent from within a category, the sender is
the object importing the category.

settings file A source file, compiled and loaded at Logtalk startup, mainly defining default values for compiler flags
that override the defaults found on the backend Prolog compiler adapter files.

singleton method A method defined in an instance itself. Singleton methods are supported in Logtalk and can also
be found in other object-oriented programming languages.

source file A text file defining Logtalk and/or Prolog code. Multiple Logtalk entities may be defined in a single source
file. Plain rolog code may be intermixed with Logtalk entity definitions.

source file directive A directive that affects how a source file is compiled.
specialization A class is specialized by defining a new class that inherit its predicates and possibly add new ones.

static binding Compile time lookup of a predicate declaration and definition when compiling a message sending call
(or a super call). Dynamic binding is used whenever static binding is not possible (e.g. due to the predicate
being dynamic or due to lack of enough information). Also known as early binding. See also dynamic binding.

subclass A class that is a specialization, direct or indirectly, of another class.

super call Call of an inherited (or imported) predicate definition. Mainly used when redefining an inherited (or
imported) predicate to call the overridden definition while making additional calls. Super calls preserve self and
may require dynamic binding if the predicate is dynamic.

superclass A class from which another class is a specialization (directly or indirectly via another class).

synchronized predicate A synchronized predicate is protected by a mutex ensuring that, in a multi-threaded applica-
tion, it can only be called by a single thread at a time.

284 Chapter 5. Glossary

The Logtalk Handbook, Release v3.21.0

tester file A source file whose main purpose is to load and a run a set of unit tests.

this The object that contains the predicate clause under execution. When the predicate clause is contained in a
category, this is a reference to the object importing the category for which the predicate clause is being executed.

threaded engine A computing thread running a goal whose solutions can be lazily and concurrently computed and
retrieved. A threaded engine also supports a term queue that allows passing arbitrary terms to the engine. This
queue can be used to pass e.g. data and new goals to the engine.

visible predicate A predicate that is within scope, a locally defined predicate, a built-in method, a Logtalk built-in
predicate, or a Prolog built-in predicate.

* genindex

285

The Logtalk Handbook, Release v3.21.0

286 Chapter 5. Glossary

BIBLIOGRAPHY

[Alexiev93] Mutable Object State for Object-Oriented Logic Programming: A Survey Alexiev, V. Technical Report
TR 93-15, Department of Computing Science, University of Alberta, Canada

[Belli_et_al_92] Object-oriented programming in Prolog: rationale and a case study Belli, F., Jack, O., Naish, L.
Technical Report 92/2, Department of Electrical and Electronics Engineering, University of Paderborn,
Germany URL: http://www.cs.mu.oz.au/~lee/papers/oolp/

[Block89] An Extended Frame Language Block, F. P.,, Chan, N. C. Proceedings OOPLSLA 89(10):151-157, ACM

[Bobrow_et_al_88] Common Lisp Object System Specification Bobrow, D. G., Michiel, L. G., Gabriel, R. P., Keene,
S. E., Kiczales, G., Moon, D. A. ACM SIGPLAN Notices(23)

[Bratko90] Prolog Programming for Artificial Intelligence Bratko, I. Addison Wesley, 2° edition, 1990

[Champaux92] A comparative Study of Object-Oriented Analysis Methods Champaux, D., Faure, P. Journal of
Object-Oriented Programming, Vol. 5, N.1, 1992

Clocksin87] Programming in Prolog Clocksin, W.F., Mellish, C.S. Springer-Verlag, New York, 1987
Cointe87] Metaclasses are First Class: the ObjVlisp Model Cointe, P. Proceedings OOPLSLA 87(10):156-167, ACM

[

[

[Cordes91] The Literate Programming Paradigm Cordes, D., Brown, M. IEEE Computer, June 1991:52-61

[Covington94] ISO Prolog: A Summary of the Draft Proposed Standard Covington, M. A. URL.: ftp://ai.uga.edu/pub/
prolog.standard/

[Cox86] Object-Oriented Programming: An Evolutionary Approach Cox, Brad J. Addison-Wesley Publishing Com-
pany, Don Mills, Ontario

[Davison89] Polka: A Parlog Object oriented language Davison, A. Ph.D. Thesis, Imperial College, London, 1989

[Davison92] A survey of logic programming-based object oriented languages Davison, A. Tech Report 92/3, Dept. of
Computer Science, University of Melbourne, Australia URL: http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.
gz

[Davison93] The deductive and object oriented features of BeBOP Davison, A. Tech Report 93/6, Dept. of Computer
Science, University of Melbourne, Australia URL:http://www.cs.mu.oz.au/tr_db/mu_93_06.ps.gz

[Delzanno97] Logic and Object-Oriented Programming in Linear Logic Delzanno, G. Ph.D. Thesis, University of
Pisa, Italy URL:http://www.mpi-sb.mpg.de/~delzanno/

[Dony90] Exception Handling and Object-Oriented Programming: Towards a Synthesis Dony, C. Proceedings
OOPLSLA 90:322-330, ACM

[Fornarino_et_al_89] An Original Object-Oriented Approach for Relation Management Fornarino, M., Pinna, A.-

M., Trousse, B. Proceedings of the 4th Portuguese Conference on Artificial Intelligence Lecture Notes in
Artificial Intelligence, Springer-Verlag (390):13-26

287

http://www.cs.mu.oz.au/~lee/papers/oolp/
ftp://ai.uga.edu/pub/prolog.standard/
ftp://ai.uga.edu/pub/prolog.standard/
http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_93_06.ps.gz
http://www.mpi-sb.mpg.de/~delzanno/

The Logtalk Handbook, Release v3.21.0

[Fromherz93] OL(P): Object Layer for Prolog Fromherz, M. URL: ftp://parcftp.xerox.com/ftp/pub/ol/

[Fukunaga86] An Experience with a Prolog-based Object-Oriented Language Fukunaga, K., Hirose, S. Proceedings
OOPLSLA 86, 21(11):224-231, ACM

[Goldberg83] Smalltalk-80 The language and its implementation Goldberg, A., Robson, D. Addison-Wesley Series
in Computer Science

[Joy_et_al_00] The Java Language Specification, Second Edition Joy, B., Steele, G., Gosling, J., Bracha, G. Addison-

Wesley, 2000

[ISO95] ISO/IEC DIS 13211-1 - Programming Language Prolog Part 1: General Core Joint Technical Committee
ISO/IEC JTC 1 URL: https://www.iso.org/standard/21413.html

[Knuth84] Literate Programming Knuth, D. E. Computer Journal, May 84, 27(2):97-111

[Lieberman86] Using Prototypical Objects to Implement Shared Behaviour in Object Oriented Systems Lieberman,
H. Proceedings OOPLSLA 86:189-214, ACM

[Maes87] Concepts and Experiments in Computational Reflection Maes, P. Proceedings OOPLSLA 87, ACM

[McCabe92] Logic and Objects McCabe, F. G. Prentice Hall Series in Computer Science

[Moon86] Object-Oriented Programming in Flavors Moon, D. Proceedings OOPLSLA 86:1-8, ACM

[Moss94] Prolog++ The Power of Object-Oriented and Logic Programming Moss, C. Addison-Wesley International
Series in Logic Programming, 1994

[Moura94] Logtalk: Programacgdo Orientada para Objectos em Prolog Moura, P., Costa, E. 2* Conferéncia e Exposicao
Portuguesa de Tecnologia Orientada por Objectos 3i Consultores, Lisboa

[Moura99] Porting Prolog: Notes on porting a Prolog program to 22 Prolog compilers or the relevance of the ISO
Prolog standard Moura, P. ALP Newsletter, Vol. 12/2, May 1999

[Moura00] Logtalk 2.6 Documentation Moura, P. Technical Report DMI 2000/1 University of Beira Interior, Portugal
[Razek92] Combining Objects and Relations Razek, G. Comunications of the ACM, 27(12):66-70

[Rumbaugh87] Relations as Semantic Constructs in an Object-Oriented Language Rumbaugh, J. Proceedings
OOPLSLA 87:466-481, ACM

[Rumbaugh88] Controlling Propagation of Operations using Attributes on Relations Rumbaugh, J. Proceedings
OOPLSLA 88:285-296, ACM

[Schachte95] Efficient Object-Oriented Programming in Prolog Schachte, P., Saab, G. Logic Programming: Formal
Methods and Pratical Applications Studies in Computer Science and Artificial Intelligence, 11 Elsevier
Science B.V. North-Holland, Amsterdam, 1995

[SICStus95] SICStus Prolog Manual SICStus URL: http://www.sics.se/ps/sicstus.html

[Shan_et_al_93] Is Multiple Inheritance Essential to OOP? (Panel) Shan, Y., Cargill, T., Cox, B., Cook, W., Loomis,
M., Snyder, A. Proceedings OOPLSLA 93:360-363

[Stefik_et_al_86] Integrating Acess-Oriented Programming into a Multiparadigm Environment Stefik, M. J., Bobrow,

D. G., Kahn, K. M. IEEE Software, January 1986:10-18
[Stroustrup86] The C++ Programming Language Stroustrup, B. Addison-Wesley Series in Computer Science

[Taenzer89] Problems in Object-Oriented Software Reuse Taenzer, D., Ganti, M., Podar, S. Proceedings of ECOOP
89 British Computer Society Workshop Series, Cambridge University Press

[Tanzer95] Remarks on Object-Oriented Modeling of Associations Tanzer, C. Journal of Object-Oriented Program-
ming, February 1995, SIGS Publications

[Tanenbaum87] Operating Systems - Design and Implementation Tanenbaum, A. Prentice-Hall Software Series, 1987

288 Bibliography

ftp://parcftp.xerox.com/ftp/pub/ol/
https://www.iso.org/standard/21413.html
http://www.sics.se/ps/sicstus.html

The Logtalk Handbook, Release v3.21.0

[Welsch89] Reasoning Objects with Dynamic Knowledge Bases Welsch, C., Barth, G. Proceedings of the 4th
Portuguese Conference on Artificial Intelligence(390):257-268 Lecture Notes in Artificial Intelligence,
Springer-Verlag, 1989

Bibliography 289

The Logtalk Handbook, Release v3.21.0

290 Bibliography

Symbols
/1, 133
/2,132
{}/1, 137
M1, 135
\+/1, 230
<</2, 138
[1/1, 134

A

abolish/1, 221
abolish_category/1, 176
abolish_events/5, 185
abolish_object/1, 176
abolish_protocol/1, 177
abstract class, 281
abstract method, 281
adapter file, 281

after/3, 245

alias/2, 155
always_true_or_false_goals flag, 90
ancestor, 281
ask_question/5, 258
asserta/l, 222

assertz/1, 223

B

bagof/3, 240
before/3, 244

built-in method, 281
built-in predicate, 281
built_in/0, 145

C

call//1-N, 247

call/1-N, 228

catch/3, 231

category, 281
category/1-3, 145
category_property/2, 169
class, 281

clause/2, 225

INDEX

clean flag, 92

closed-world assumption, 281
code_prefix flag, 91
coinduction flag, 81
coinductive predicate, 281
coinductive/1, 155
coinductive_success_hook/1-2, 254
complementing category, 281
complements flag, 90
complements_object/2, 182
conforms_to_protocol/2-3, 181
context/1, 214
context_switching_calls flag, 90
create_category/4, 172
create_logtalk_flag/3, 213
create_object/4, 173
create_protocol/3, 175
current_category/1, 168
current_event/5, 186
current_logtalk_flag/2, 212
current_object/1, 168
current_op/3, 218
current_predicate/1, 219
current_protocol/1, 169

D

debug flag, 91
define_events/S, 187
directive, 281
discontiguous/1, 156

doclet file, 281

doclet object, 281
domain_error/2, 234
duplicated_directives flag, 89
dynamic binding, 281
dynamic/0, 147

dynamic/1, 157
dynamic_declarations flag, 90

E
elif/1, 143
else/0, 144

291

The Logtalk Handbook, Release v3.21.0

encapsulation, 282
encoding/1, 139
encoding_directive flag, 81
end_category/0, 147
end_object/0, 148
end_protocol/0, 148
endif/0, 144

engines flag, 81

entity, 282

entity directive, 282
eos//0, 247
evaluation_error/1, 237
event, 282

events flag, 90
existence_error/2, 235
expand_goal/2, 252
expand_term/2, 250
extends_category/2-3, 179
extends_object/2-3, 178
extends_protocol/2-3, 179

F

findall/3, 241
findall/4, 242
forall/2, 242
forward/1, 246

G

goal_expansion/2, 253
grammar rule, 282

grammar rule non-terminal, 282
grammar rule terminal, 282

H

hook flag, 91
hook object, 282
hot patching, 282

identity, 282

if/1, 143

ignore/1, 229
implements_protocol/2-3, 180
imports_category/2-3, 183
include/1, 140

info/1, 149

info/2, 158

inheritance, 282
initialization/1, 140
instance, 282
instantiates_class/2-3, 184
instantiation, 282
instantiation_error/0, 232

L

lambda expression, 282
lambda free variable, 282
lambda parameter, 282
lambda_variables flag, 90
library, 282

loader file, 282

local predicate, 282
logtalk_compile/1, 201
logtalk_compile/2, 202
logtalk_library_path/2, 209
logtalk_load/1, 203
logtalk_load/2, 205
logtalk_load_context/2, 210
logtalk_make/0, 206
logtalk_make/1, 207
logtalk_make_target_action/1, 208

M

message, 283

message to self, 283
message_hook/4, 256
message_prefix_stream/4, 256
message_tokens//2, 255
meta-argument, 283
meta-interpreter, 283
meta-predicate, 283
meta_non_terminal/l, 159
meta_predicate/1, 158
metaclass, 283

method, 283
missing_directives flag, 89
mode/2, 160

module, 283

modules flag, 81

monitor, 283

multifile predicate, 283
multifile/1, 161

O

object, 283

object database, 283
object/1-5, 149
object_property/2, 170
once/l, 229

op/3, 141

optimize flag, 91

P

parameter, 283
parameter variable, 283
parameter/2, 215
parametric category, 283

292

Index

The Logtalk Handbook, Release v3.21.0

parametric entity, 283
parametric object, 283
parametric object proxy, 283
parent, 283
permission_error/3, 235
phrase//1, 248

phrase/2, 249

phrase/3, 249

portability flag, 89

predicate, 283

predicate alias, 283

predicate directive, 284
predicate scope container, 284
predicate scope directive, 284
predicate_property/2, 220
primary predicate declaration, 284
print_message/3, 254
print_message_token/4, 258
print_message_tokens/3, 257
private inheritance, 284
private predicate, 284
private/1, 162

profiler, 284
prolog_compatible_version flag, 81
prolog_compiler flag, 90
prolog_conformance flag, 81
prolog_dialect flag, 81
prolog_loader flag, 91
prolog_version flag, 81
protected inheritance, 284
protected predicate, 284
protected/1, 163

protocol, 284

protocol/1-2, 153
protocol_property/2, 171
prototype, 284

public inheritance, 284
public predicate, 284
public/1, 163

Q

question_hook/6, 259
question_prompt_stream/4, 260

R

redefined_built_ins flag, 90
relative_to flag, 91

reload flag, 91

report flag, 91
representation_error/1, 236
resource_error/1, 238
retract/1, 226

retractall/1, 227

S

scratch_directory flag, 91
self, 284

self/1, 216

sender, 284

sender/1, 217
set_logtalk_flag/2, 142,212
setof/3, 243

settings file, 284
settings_file flag, 81
singleton method, 284
singleton_variables flag, 90
source file, 284

source file directive, 284
source_data flag, 91
specialization, 284
specializes_class/2-3, 185
static binding, 284
subclass, 284

super call, 284

superclass, 284
suspicious_calls flag, 90
synchronized predicate, 284
synchronized/1, 164
syntax_error/1, 238
system_error/0, 239

T

tabling flag, 81
term_expansion/2, 251

tester file, 285

this, 285

this/1, 217

threaded engine, 285
threaded/0, 154

threaded/1, 188
threaded_call/1-2, 189
threaded_engine/1, 196
threaded_engine_create/3, 195
threaded_engine_destroy/1, 196
threaded_engine_fetch/1, 200
threaded_engine_next/2, 198
threaded_engine_next_reified/2, 198
threaded_engine_post/2, 200
threaded_engine_self/1, 197
threaded_engine_yield/1, 199
threaded_exit/1-2, 192
threaded_ignore/1, 191
threaded_notify/1, 194
threaded_once/1-2, 190
threaded_peek/1-2, 193
threaded_wait/1, 193

threads flag, 81

throw/1, 232

Index

293

The Logtalk Handbook, Release v3.21.0

trivial_goal_fails flag, 89
type_error/2, 233

U

undefined_predicates flag, 89
underscore_variables flag, 90
unicode flag, 81
unknown_entities flag, 89
unknown_predicates flag, 89
use_module/2, 166

uses/2, 165

Vv

version_data flag, 89
visible predicate, 285

294

Index

	User Manual
	Main features
	Integration of logic and object-oriented programming
	Integration of event-driven and object-oriented programming
	Support for component-based programming
	Support for both prototype and class-based systems
	Support for multiple object hierarchies
	Separation between interface and implementation
	Private, protected and public inheritance
	Private, protected and public object predicates
	Parametric objects
	High level multi-threading programming support
	Smooth learning curve
	Compatibility with most Prolog systems and the ISO standard
	Performance
	Logtalk scope

	Nomenclature
	C++ nomenclature
	Java nomenclature

	Messages
	Operators used in message sending
	Sending a message to an object
	Delegating a message to an object
	Sending a message to self
	Broadcasting
	Calling imported and inherited predicates
	Message sending and event generation

	Objects
	Objects, prototypes, classes, and instances
	Defining a new object
	Parametric objects
	Finding defined objects
	Creating a new object in runtime
	Abolishing an existing object
	Object directives
	Object relationships
	Object properties
	Built-in objects

	Protocols
	Defining a new protocol
	Finding defined protocols
	Creating a new protocol in runtime
	Abolishing an existing protocol
	Protocol directives
	Protocol relationships
	Protocol properties
	Implementing protocols
	Built-in protocols

	Categories
	Defining a new category
	Finding defined categories
	Creating a new category in runtime
	Abolishing an existing category
	Category directives
	Category relationships
	Category properties
	Importing categories
	Calling category predicates
	Parametric categories

	Predicates
	Reserved predicate names
	Declaring predicates
	Defining predicates
	Built-in object predicates (methods)
	Predicate properties
	Finding declared predicates
	Calling Prolog built-in predicates
	Calling Prolog user-defined predicates

	Inheritance
	Protocol inheritance
	Implementation inheritance
	Public, protected, and private inheritance
	Composition versus multiple inheritance

	Event-driven programming
	Definitions
	Event generation
	Communicating events to monitors
	Performance concerns
	Monitor semantics
	Activation order of monitors
	Event handling

	Multi-threading programming
	Enabling multi-threading support
	Enabling objects to make multi-threading calls
	Multi-threading built-in predicates
	One-way asynchronous calls
	Asynchronous calls and synchronized predicates
	Synchronizing threads through notifications
	Threaded engines
	Multi-threading performance

	Error handling
	Compiler warnings and errors
	Runtime errors

	Documenting applications
	Documenting directives
	Processing and viewing documenting files
	Inline formatting in comments text

	Performance
	Local predicate calls
	Calls to imported or inherited predicates
	Calls to module predicates
	Messages
	Inlining
	Generated code simplification and optimizations
	Other considerations

	Installing Logtalk
	Hardware and software requirements
	Logtalk installers
	Source distribution
	Directories and files organization

	Writing, running, and debugging applications
	Writing applications
	Compiling and running applications
	Debugging applications

	Prolog integration and migration guide
	Source files with both Prolog code and Logtalk code
	Encapsulating plain Prolog code in objects
	Converting Prolog modules into objects
	Compiling Prolog modules as objects
	Dealing with proprietary Prolog directives and predicates
	Calling Prolog module predicates
	Compiling Prolog module multifile predicates

	Reference Manual
	Grammar
	Entities
	Object definition
	Category definition
	Protocol definition
	Entity relations
	Entity identifiers
	Source file names
	Terms
	Directives
	Clauses and goals
	Lambda expressions
	Entity properties
	Predicate properties
	Compiler flags

	Control constructs
	Message sending
	Message delegation
	Calling imported and inherited predicates
	Calling external predicates
	Context switching calls

	Directives
	Source file directives
	Conditional compilation directives
	Entity directives
	Predicate directives

	Built-in predicates
	Enumerating objects, categories and protocols
	Enumerating objects, categories and protocols properties
	Creating new objects, categories and protocols
	Abolishing objects, categories and protocols
	Objects, categories, and protocols relations
	Event handling
	Multi-threading
	Multi-threading engines
	Compiling and loading source files
	Flags

	Built-in methods
	Execution context
	Reflection
	Database
	Meta-calls
	Error handling
	All solutions
	Event handling
	Message forwarding
	Definite clause grammar rules
	Term and goal expansion
	Coinduction hooks
	Message printing
	Question asking

	Tutorial
	List predicates
	Defining a list object
	Defining a list protocol
	Summary

	Dynamic object attributes
	Defining a category
	Importing the category
	Summary

	A reflective class-based system
	Defining the base classes
	Summary

	Profiling programs
	Messages as events
	Profilers as monitors
	Summary

	FAQ
	General
	Why are all versions of Logtalk numbered 2.x or 3.x?
	Why do I need a Prolog compiler to use Logtalk?
	Is the Logtalk implementation based on Prolog modules?
	Does the Logtalk implementation use term-expansion?

	Compatibility
	What are the backend Prolog compiler requirements to run Logtalk?
	Can I use constraint-based packages with Logtalk?
	Can I use Logtalk objects and Prolog modules at the same time?

	Installation
	The integration scripts/shortcuts are not working!
	I get errors when starting up Logtalk after upgrading to the latest version!

	Portability
	Are my Logtalk applications portable across Prolog compilers?
	Are my Logtalk applications portable across operating systems?

	Programming
	Should I use prototypes or classes in my application?
	Can I use both classes and prototypes in the same application?
	Can I mix classes and prototypes in the same hierarchy?
	Can I use a protocol or a category with both prototypes and classes?
	What support is provided in Logtalk for defining and using components?
	What support is provided in Logtalk for reflective programming?

	Troubleshooting
	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!
	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!
	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

	Usability
	Is there a shortcut for compiling and loading source files?
	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?
	Are there shortcuts for the make functionality?

	Deployment
	Can I create standalone applications with Logtalk?

	Performance
	Is Logtalk implemented as a meta-interpreter?
	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?
	How about message-sending performance? Does Logtalk use static binding or dynamic binding?
	Which Prolog-dependent factors are most crucial for good Logtalk performance?
	How does Logtalk performance compare with plain Prolog and with Prolog modules?

	Licensing
	What’s the Logtalk distribution license?
	Can Logtalk be used in commercial applications?
	What’s the final license for a combination of Logtalk with a Prolog compiler?

	Support
	Are there professional consulting, training and supporting services?

	Glossary
	Bibliography
	Index

