Skip to contents

This function will generate n random points from a exponential distribution with a user provided, .rate, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_exponential(.n = 50, .rate = 1, .num_sims = 1)

Arguments

.n

The number of randomly generated points you want.

.rate

A vector of rates

.num_sims

The number of randomly generated simulations you want.

Value

A tibble of randomly generated data.

Details

This function uses the underlying stats::rexp(), and its underlying p, d, and q functions. For more information please see stats::rexp()

Author

Steven P. Sanderson II, MPH

Examples

tidy_exponential()
#> # A tibble: 50 × 7
#>    sim_number     x       y      dx      dy       p       q
#>    <fct>      <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 1              1 1.32    -0.932  0.00180 0.732   1.32   
#>  2 1              2 0.935   -0.800  0.00630 0.608   0.935  
#>  3 1              3 0.00817 -0.669  0.0186  0.00813 0.00817
#>  4 1              4 1.03    -0.537  0.0468  0.642   1.03   
#>  5 1              5 0.00604 -0.406  0.100   0.00602 0.00604
#>  6 1              6 1.56    -0.275  0.185   0.791   1.56   
#>  7 1              7 0.969   -0.143  0.294   0.621   0.969  
#>  8 1              8 1.09    -0.0116 0.410   0.663   1.09   
#>  9 1              9 0.256    0.120  0.507   0.226   0.256  
#> 10 1             10 2.35     0.251  0.569   0.905   2.35   
#> # ℹ 40 more rows