Skip to contents

This function will generate n random points from a cauchy distribution with a user provided, .location, .scale, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_cauchy(.n = 50, .location = 0, .scale = 1, .num_sims = 1)

Arguments

.n

The number of randomly generated points you want.

.location

The location parameter.

.scale

The scale parameter, must be greater than or equal to 0.

.num_sims

The number of randomly generated simulations you want.

Value

A tibble of randomly generated data.

Details

This function uses the underlying stats::rcauchy(), and its underlying p, d, and q functions. For more information please see stats::rcauchy()

Author

Steven P. Sanderson II, MPH

Examples

tidy_cauchy()
#> # A tibble: 50 × 7
#>    sim_number     x       y      dx       dy      p       q
#>    <fct>      <int>   <dbl>   <dbl>    <dbl>  <dbl>   <dbl>
#>  1 1              1 -6.24   -14.2   3.62e- 4 0.0506 -6.24  
#>  2 1              2  0.704   -6.65  1.39e- 2 0.695   0.704 
#>  3 1              3 -0.725    0.889 1.60e- 1 0.300  -0.725 
#>  4 1              4 -0.252    8.43  8.92e- 3 0.421  -0.252 
#>  5 1              5 -0.0797  16.0   0        0.475  -0.0797
#>  6 1              6 -0.850   23.5   7.70e-12 0.276  -0.850 
#>  7 1              7 -5.13    31.0   5.06e- 5 0.0613 -5.13  
#>  8 1              8  0.360   38.6   0        0.610   0.360 
#>  9 1              9 -2.74    46.1   0        0.111  -2.74  
#> 10 1             10 -1.57    53.6   1.35e-19 0.180  -1.57  
#> # ℹ 40 more rows